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* Introduction to challenges with high penetration of
power electronics (PE) in grids

« Advanced integration approaches
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Infroduction: PE Grid Challenges
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L Power Electronics
« Inverter-based generations
(eg, solar, wind)
« Power electronic loads (eg,
® ® electric vehicle chargers,
Intermediate  *%°° extreme fast chargers,
Scenario ' variable-frequency drives)
"UploSOmPE s « Power flow controllers (eg,
e HVdc, FACTS)

*Penetration defined by weighed average of
power flowing through PEs
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More information may be found here:
https://info.ornl.gov/sites/publications/Files/Pub141951.pdf.
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Advanced Integration
Approaches: Mulfi-
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010101101 HARANC

Power Plant (MARS), A
Hyrid PV Plant

Project Team: Oak Ridge National Laboratory, ABB/Hitachi-ABB, Southern California Edison, Georgia
Institute of Technology, Opal-RT



Existing State-of-Art
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MARS: Integrated Solution Approach (A Hybrid PV Plant)

Im‘egrm‘ed system approach similar to laptops (vs. deskfop)

« Reduced PE and transformer interfaces: Reduces cost, Reduces losses
« Advanced control approaches for coordinated use of resources and improved grid support/

stability l

Distribution AC grid

| Multi-port Autonomous Reconfigurable Solar power plant (MARS) =
LVDC link LVDC link | l LVDC link Transmission
] AC arid

1 HVdc link  fEEEEEEeEs
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EMT Modeling of Grids

« Grid model for MARS aft Pittsburg
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TS to EMT model conversion methodology developed through extraction and lumped model
representation
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EMT Simulation of MARS

« Up to 8000x speed-up and >98% accuracy

Distribution AC grid
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Fast simulation algorithms developed (~ 8000x speed-up)
%OAK RIDGE

National Laboratory




%OAK RIDGE

National Laboratory

MARS Control
Architecture




MARS Control Architecture: Overview

 Featuresin L1

— Control of ac-side grid components

« Voltages, currents, active/reactive
power, frequency (including predictive
features)

— Control of de link components
« Voltages, currents, power

— Internal states within MARS
« Circulating currents

« Balance energy between different SMs
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MARS Control Architecture: Overview

« Features in L2
— Balance capacitor voltages in all SMs

— Generate switching signals for a part
of the SMs
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MARS Control Architecture: Overview

 Featuresin L3

— Voltage controlled in PV for power
generation needed from PV

» Internal current loop control for stability
and limits based on rating

— Power controlled in ESS

 Internal current loop control for stability
and limits based on rating

%OAK RIDGE

National Laboratory




MARS Control Architecture: Overview
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MARS: Evaluation

Distribution AC grid
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MARS: Evaluation

Distribution AC grid
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Hybrid PV Plant: Upgrades

« Scenario: Low inertia low SCR (~ 2) connection to the hybrid PV-
ESS plants

» Use Case: Balanced and unbalanced faults of differing magnitudes, at
different locations

* Requirements Identified: Capacitor banks, large sized synchronous
condensers, reactive power control in PV and ESS inverters

« Challenges: Limited continuity of operations is feasible (smaller feasible region
compared to MARS)
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Improves SCR at POI (and maintains

. . . (c) ..
stable operation during faults) Maintains active power similar to

MARS operations
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Hybrid PV Plant: Upgrades

« Scenario: Low inertia low SCR (~ 2) connection to the hybrid PV-
ESS plants
» Use Case: Loss of generation

« Requirements Identified: Capacitor banks, synchronous condensers (~ 1:4),
reactive power control in PV and ESS inverters, VSG support in PV and ESS
inverters

« Challenges: Coordination between two different resources can be a
challenge

Limited stable integration of hybrid PV plants fo low SCR grids may require

large sized synchronous condensers along with VSG control
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Conclusions

 MARS provides improved region of stability (compared to hybrid
PV with upgrades)
« Different fault locations
« Different fault magnitudes
« Different SCR operating conditions

« Comparison of MARS with hybrid PV and upgrades indicates
« Reduced costs of operation
« Easier coordination
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