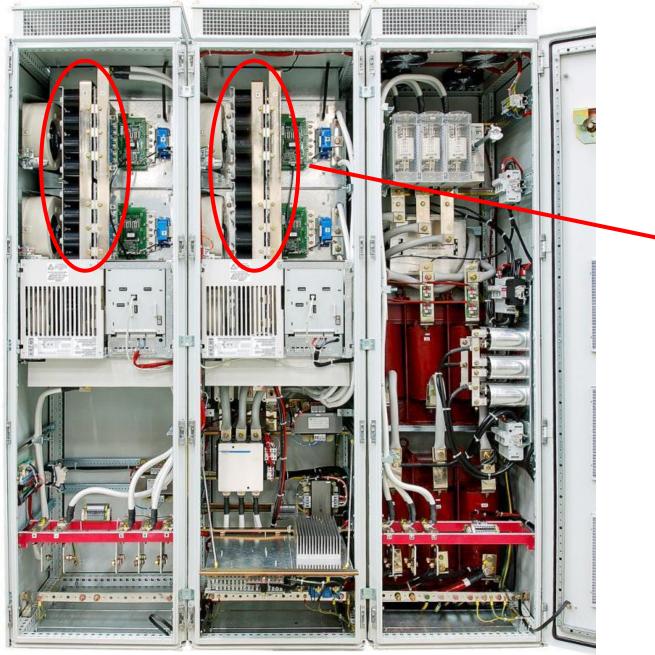
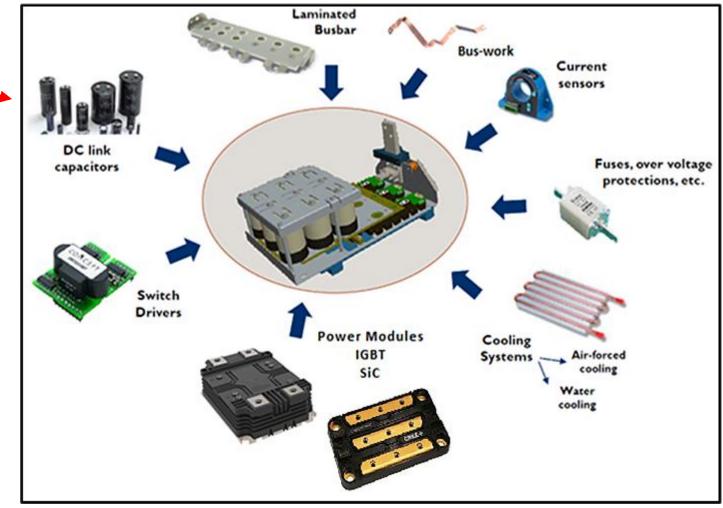


Innovative IGBT & SiC busbar technology for Improved Temperature, Partial Discharge Inception Voltage and Power Density


Presented by: John E. Mills Business Development Manager, Power Products Amphenol Global Interconnect Systems john.mills@amphenol-gis.com 860-560-6612

Fabien DIJOLS Business Development Manager, Amphenol-Auxel Amphenol Global Interconnect Systems <u>fabien.dijols@auxel.com</u> +33 (0)6 23 16 53 05

A New Way for Busbars in Power Conversion. What we'll discuss...


- The Power Converter and Stack
- Overview of today's low inductance busbars;
- Legacy challenges for busbar insulation systems
- New challenges for busbar insulation systems
- A new insulating solution
 - Advantages to address current and new challenges
 - Materials...
 - Tests...
 - Manufacturability...
 - Applications
- Wrap Up

A Power Converter...

The Power Stack

Power electronic stacks are assemblies that include the power semiconductor **modules**, **busbars**, gate drivers, snubber capacitors, protection, **DC-link capacitors** and cooling.

Conventional Busbars

A laminated busbar is an electrical power interconnection circuit consisting of several flat conductors insulated from each other.

Laminated busbars

- Backbone of the power stack
- DC-link
- Low inductance design
- Several production processes:
 - Stacked Busbar: preferred for large volumes but not suitable for HV applications
 - Laminated busbars with thermo-glued insulating films : suitable for low inductance and HV (partial discharges)

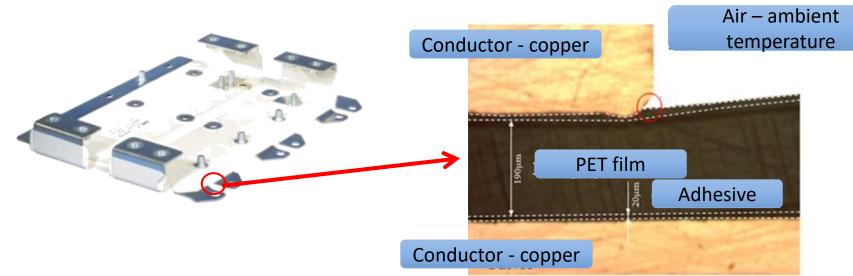
Conventional Busbars

A laminated busbar is an electrical power interconnection circuit consisting of several flat conductors insulated from each other.

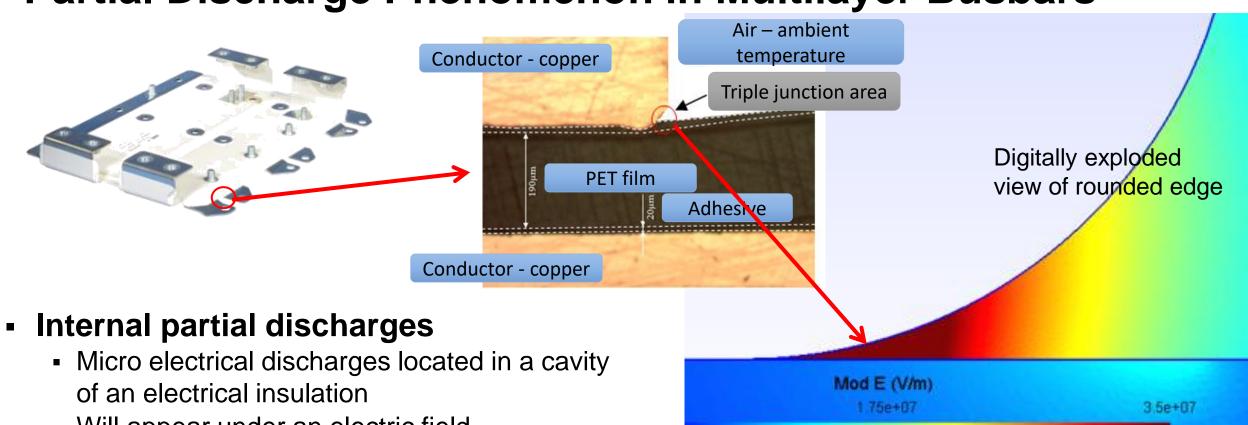
Laminated busbars


- Backbone of the power stack
- DC-link
- Low inductance design
- Several production processes:
 - Stacked Busbar: preferred for large volumes but not suitable for HV applications
 - Laminated busbars with thermo-glued insulating films : suitable for low inductance and HV (partial discharges)

Several insulating materials


- Thin films: PET, PEN, etc. (main limitation: cost, manufacturability)
- Powder coating (main limitations: inductance and partial discharge via micro-pores)
- Plastic (large volumes, LV applications)
- Silicone resins dipped

Applications: renewable energy, motor speed control, EV, railway, commercial air, marine, military systems...



Partial Discharge Phenomenon in Multilayer Busbars

Internal partial discharges

- Micro electrical discharges are located in a cavity of an electrical insulation
- Will appear under an electric field
- A random phenomenon which will cause progressive erosion of the insulation system

Partial Discharge Phenomenon in Multilayer Busbars

- Will appear under an electric field
- A random phenomenon which will cause progressive erosion of the insulation system

Triple junction area

- Critical zone where the electric field is at its maximum
- Air is both in contact with conductor (copper) and insulation (ex: polymer)
- 5µm 15µm (in air environment, ambient temperature)
 - Below 5µm: PD will not appear
 - Above 15µm: PD can possibly appear (Cf. Paschen curve)

Avoiding Partial Discharges (PD)

- 1. Avoid air gaps in the insulation system (dielectric strength of air is very low)
 - Insulation bonded to the conductor
 - Limit the size of the air gaps to < 10 microns (use better material)
 - Fill the "singular" areas with insulating material
- 2. Limit the **intensity of the electric field**, where there would be air gaps
 - Increase space between conductors (will increase inductance not acceptable)
 - Avoid peak effect, use round edges,
 - Reduce relative **permittivity** level of the insulation system,
 - Reduce electric field intensity.
- 3. Use **PD resistant insulation** (use of inorganic material)

<u>PD Def:</u> micro electrical discharges located in a cavity of an electrical insulation under an electric field. These micro-discharges will cause progressive erosion of the insulation.

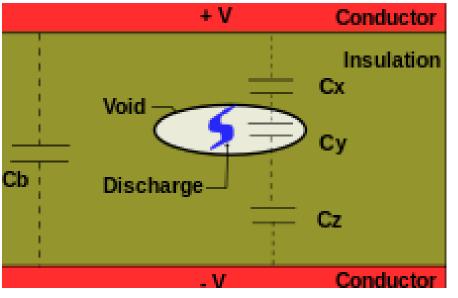
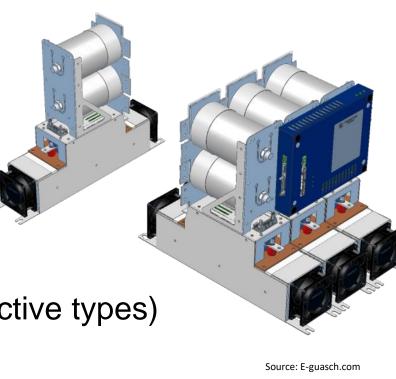



Photo credit : Wtshymanski at English Wikipedia

Evolving Insulation system challenges

- Higher switching frequency (from Si IGBT to SiC MOSFET)
 - 10/20kHz.... 50kHz.... 200kHz
- Higher temperatures
 - SiC chips can operate at a much higher temperature
 - Some specific applications already require 200°C busbars
- Higher voltages
 - Additional stress on insulation systems (especially low inductive types)
 - Partial discharge
- Long product life cycle expectations
 - New systems = 30y lifetime
- System compactness

Our new technology will provide solutions to these constraints...

A Solution to the challenges: <u>Varnish Insulated Busbar</u>

- Very thin layers of varnish coating
- A new technique for busbars, but varnish is widely used in the electrical field (as enameled wire) for electric motor and transformer windings:
 - existing standards (eg: temp class IEC60085; insulation class, etc.)
 - proven robust electric & thermal performance

Thin layer deposition by Microspraying & UV Curing

 Charge transport and molecular displacement explains the higher dielectric strength of a thin insulating layer (compared to a thick layer)*

Example :

- 160 μm (2 layers of 80 μm) => 5.0 kVAC
- 160 μm (4 layers of 40 μm) => 5.8 kVAC
- Thin layers increase thickness homogeneity & control specific (triple junction) areas.
- Avoid bubbles & micro-cavities (fewer partial discharges)
- Ability to coat the edge
 - Varnish application in multiple thin layers (5-10µ)
 - Final thickness of this test is 150-200µm also on the edges
 - Use of thixotropic agent

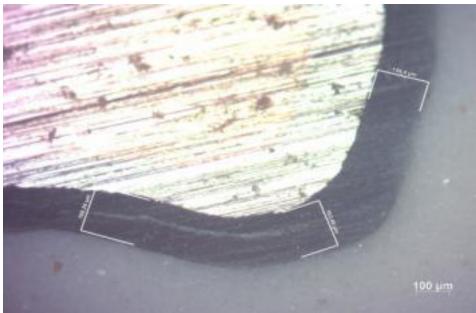


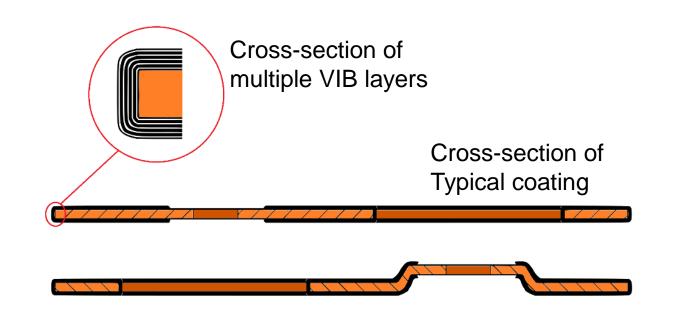
Image of busbar edge. White is CU busbar, black is varnish along the edge.

Bibliography *Thickness-Dependent DC Electrical Breakdown of Polyimide Modulated by Charge Transport and Molecular Displacement Daomin Min , Yuwei Li, Chenyu Yan, Dongri Xie , Shengtao Li , Qingzhou Wu and Zhaoliang Xing - 2018

Continued...

Thin layer deposition (cont'd.)

- Possible to coat layers of different kinds (adhesion primer, special coating,...)
- Clean process low material loss slight masking of connection areas is sufficient
- UV LED curing **low power** consumption;
- Fast UV process 1 conductor: 10-15 minutes

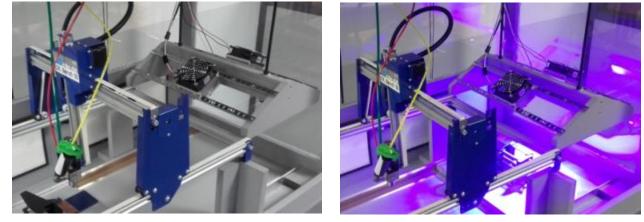

Making a Varnish Insulated Busbar (VIB)

Conductors

- Copper or aluminum conductors
- **Surface treatment**: tin, nickel silver, unplated...

Varnish base

- Non-aqueous acrylic base
- Solvent-free
- With thinner (viscosity & flexibility to final coating)
- With photo-initiator for UV cross-linking LEDs
- With thixotropic additive for viscosity and an adhesion promoter
- Possibility to add inorganic charges to improve electrical performance



Insulation

- Each conductor is individually insulated by multiple thin coats of varnish
- A precise deposit is insured using by microspraying with robotics
- UV cross-linking for each layer/coat
- 5-20 microns per layer (to obtain 80-200µm insulation voltage comparable to standard PET film, but improved inductance and homogeneity.

Making a Varnish Insulated Busbar

UV Cross-Linking

Crédit photo :AUXEL

Multiple Conductors - Mechanical Assembly

- Bonding by UV thermo-adhesive
- Assembly by VPI (vacuum pressure impregnation)

• Mechanical assembly, ...

Benefits of the Varnish Insulated Busbar

- High temperature (180°C continuous target: 220°C)
- Excellent PD performance including at the edge
- Suitable for high voltage applications
- Improved inductance
- Higher frequency operation
- Possible cost decrease (compared to existing technologies)
- Environmentally friendly production:
 - low material waste (localized micro-spraying)
 - Iow energy no intensive heating-press
 - **no (VOC)** Volatile Organic Compounds

Continued...

Benefits (cont'd.)

Favorable manufacturing conditions

- robotics + micro spraying + UV Led lamp + clean room ISO class 7-8)
- easy to produce complex and/or large geometries,
- well-suited to small to medium production runs
- no additional tooling costs
- Easily adaptable layer thickness
- Power Density
 - Compact, thinner + eliminates sealed edges
 - Much thinner for multi-kV structures.
- Solvent free resin to eliminate outgassing
- Proven technique is widely used in the motor-winding industry
- The VIB technique is also applicable to single conductor busbars, such as AC Output
- Possible to use inside power modules

Comparison of Insulation for busbars VIB vs Several Insulation Types

	Powder coating	Silicone coating	Plastic injection	PET film (stacked LBB)	PET film glued (heating press)	PEN PI film glued (heating press)	Varnish Insulation, UV Cured
Dielectric Strength	Yes	Yes	Yes	Yes	Yes	Yes	Excellent
High Temperature	155 to 180°C	200°C	80 to 200°C	105 to 200°C	105°C	130 to 180°C	200°C+
High Voltage	Yes	Yes	Yes	No (<1000V)	Yes	Yes	Excellent
High PDIV	No	No	No	No	Yes	Yes	Excellent
Low Inductance	Medium	Medium	Medium	Yes	Yes	Yes	Excellent
Environmental Considerations	Large power consumption, Smoke	Energy consumption, vapors	Ok	Ok	Large power consumption	Large power consumption	Solvent free, Low-energy

VIB – Research Partnerships

R&D Consortium

- Received funding from the Clean Sky 2 Joint undertaking via the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 821065.
- Topic Leader : ZODIAC AERO ELECTRIC (Subsidiary of SAFRAN Group)
- Consortium: Amphenol AUXEL (as consortium leader), LSEE (Artois University France)

R&D Status

- Technology Readiness level (TRL) : 6
- Technology available for collaborative research & commercial prototypes
- International Patents (EUR, USA, CN, IN)
 - WO2019068969 Multilayer connector with conductors insulated by enameling
 - https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019068969
 - WO2019068968 Multilayer connector insulated by impregnation with resin
 - https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019068968
 - Co-inventors : LSEE (Artois University) & Amphenol

Wrap-up...

- Need for improved technologies
 - SiC, Electric Aircraft (MEA), Electric Vehicles (EV), Military systems, etc. These have placed new demands on the interconnection system!
- New insulation concept for busbars
 - high temperature,
 - high PDIV,
 - high power Density
 - compact design,
 - complex geometries
 - cost advantages
- Limited technological risks
 - Based on existing technologies (motors and transformers)
- Technology is ready for collaborative research & <u>commercial prototypes</u>
- Underway several interesting projects for further technology research.

Thank You!!

Amphenol

GLOBAL INTERCONNECT SYSTEMS

Your Global Value Added Service Provider

Presented by: John E. Mills Business Development Manager, Power Products Amphenol Global Interconnect Systems john.mills@amphenol-gis.com 860-560-6612

Fabien DIJOLS Business Development Manager, Amphenol-Auxel Amphenol Global Interconnect Systems <u>fabien.dijols@auxel.com</u> +33 (0)6 23 16 53 05