

Factory of the Future Technologies and Approaches Applied to Solve Today's Power Density Challenges

To: APEC 2021 Conference

From: Matt Kelly, Chief Technologist IPC

Rick Fishbune, Eric Swenson IBM Corporation

Date: June 9-12, 2021 Phoenix, AZ

Agenda

- Factory of the Future Electronics Manufacturing Industry Context
 - definition, expectations, integration levels, opportunity vs. current state, implementation and ROI delivery focus
- Applied examples Solving Today's Power Density Challenges
 - a) Creating reliable hardware designs with digital thread and CAD simulation
 - b) Enabling higher placement densities with back-end manufacturing automation
 - c) Achieving high quality levels, yields, and throughput with data analytics
- Key Messages & Call to Action

Industry 4.0, Ind4.0, Industrie 4.0, Smart Manufacturing, Smart Factory Factory of the Future (F2)

F2 = Modernization

Industry-wide transformation

Includes:

- (a) Highly skilled people new roles, skills, focus
- **(b) New technologies** Al, data analytics, IT/OT networks
- (c) Conventional technologies PCB, components, PCBA
- (d) Foundational engineering/operations QMS, SPC, SCM 'good old-fashioned engineering'

Trusted, global, horizontal supply chain
*Industry coordination of F2 implementation needed

Impacts E2E operations: Design – PCB – Components – Assembly/Test – Mechanicals – Final System Build

Expect moderate/slow steady F2 adoption → 2,5,10 yrs Reason: CapEx and skills intensive

Definition & Expectations

"Linking people, objects and systems creates dynamic, real-time optimised, self-organising and inter-enterprise value creation networks which can be optimised according to various criteria such as costs, availability and resource usage"

(Plattform Industrie 4.0 2015, p. 3)

Individual Factory/Company

OEM, PCB, EMS, Components, Mechanicals

*Current adoption level across industry

Individual company view

New technologies & processes Productivity, efficiency, ROI

2013 - 2020

OEM-defined ecosystems

Faster cycle times, quality/reliability Data driven supplier management

2025

Modernization Integration Levels

Electronics Manufacturing Industry

Common Supply-base servicing multiple OEMs/markets Regional & Global Supply Chains Various Markets (Aerospace, Automotive, Consumer) Big and small companies (Tier 1 – Tier 5)

*Not many are thinking about or addressing this

Industry-wide view & transformation

Modernized infrastructure for industry benefit Industry leadership needed

2030

Complexity, coordination, industry standardization needs increase

Geographies/Regions
Electronics Segments
Adoption Expectations
Current Adoption Rate

Silicon fab / packaging leading, hardware assembly lagging

F2 CAPX intensive; moderate-steady growth next 5-10yrs, ROI needed

Low < 20%; with high rates of implementation failure reported

Transformation is occurring, but is moderate/slow

Focus: Implement ROI Driven Solutions

Factory of the Future Disruptive Technology Stack

- Common design data format Digital Product Model Exchange (DPMX)
- Common equipment data protocol Connected Factory Exchange (CFX)
- Data Analytics/Predictive Analytics, Big Data/Business Intelligence (BI)
- 3D Printing/Additive Manufacturing in Electronics
- Artificial Intelligence (AI) / Machine Learning
- Al-Enabled Inspection
- Automation
- Industrial Networks (IT/OT Convergence)
- CAD, 3D Design
- Robotics/Cloud Robotics/ Cobots
- Simulation and Modeling
- Al Human Presence Detection
- Cybersecurity
- Industrial Internet of Things (IIoT)
- Smart Sensor/Actuator Technologies
- Cloud Computing
- Augmented Reality/Virtual Reality
- Digital Twin/Digital Thread
- Digital Transformation of Operations and Supply Chain
- Systems Integration
- Cyber-Physical Production Systems (CPPSs)
- Blockchain / Digital Supply Chain

3 Examples – Innovative Manufacturing Solutions Solving Today's Power Density Challenges

→ Enable miniaturization | higher density | highest quality & reliability

Applying Factory of the Future approaches, technologies, thinking

Challenge #1: Create reliable hardware designs - Digital Thread

Logic, schematics, engineering drawings

PCB stack ups, drill charts

ECAD Electrical 2D physical design, BoM

MCAD
3D mechanical design

Need - Standardized model-based design data flow - design, procurement, manufacturing, field application

Challenge #1: Create reliable hardware designs - Digital Thread

Issue: Ensuring high quality/reliability electro-mechanical designs with faster NPI cycles

- Drivers: rapid NPI cycles, electrical-mechanical co-design improvements, new design rules
- Functionality, speed, bandwidth ↑
- Compute, memory, clocking frequency
- Form factor, real estate Ψ ; HDI routing/vias usage ↑
- Power consumption, thermal management ↑
- Component packaging miniaturization BTC design-multi package integration, \leq 01005 passives
- Mechanical design complexity / need for 3D (multi-plane) power/ground spacing checks ↑

Innovation focus: Digital thread, CAD simulation, and Design for Excellence

- Getting it right the first time!
- Enabling real-time dynamic changes, reduce transcription errors, greater flexibility and productivity
- Single digital thread: logic \rightarrow schematics \rightarrow card outline \rightarrow BoM \rightarrow physical design \rightarrow procurement \rightarrow manufacturing
- DfX, FMEA design reviews, simulation, dynamic ECAD-MCAD integration, new system-level standards

Challenge #2: Enable higher placement densities - BEOL Automation

Dense electrical-mechanical integration Complex, stacked final assembly Bezzle, screen, battery, lenses, electronics

Apple iPhone 12 teardown (ifixit.com)

Miniaturization, 3D high density, power & thermal management

Challenge #2: Enable higher placement densities – BEOL Automation

Issue: Miniaturization of electronic devices, circuit layouts, and available PCB real estate

- Driven by mobile/consumer, medical, and automotive electronic segments
- Tighter placement keep-out rules AND tighter tolerances
- Shrinking component packages (1-2mm BTCs, 01005 caps/resistors)
- On board voltage regulation ('down regs')
- Higher power devices requiring optimal power/thermal management

Innovation focus: Back-end of line mechanical automation

- FEOL (SMT) highly automated; BEOL (mechanical assembly) still highly manual
- High accuracy mechanical automation (repeatability, throughput)
- BEOL mechanical inspection Al-based visual inspection Final system quality
- Automated BEOL assembly SIGNIFICANT opportunities
 - > compliant pin, manual insertion, precision screw-driving, heat sink assembly
 - > ICT/FCT handling, BTC inspection, false call reduction

Challenge #2: Enable higher placement densities - BEOL Automation

Cobots precision alignment, applied force eg) heatsink TIM bond-line

This is what engineering & operations actually needs

Data analytics starts with -> Statistical Process Control, Six Sigma - Master Black Belts DMADV, DMAIC

0.5

Manufacturing line – secure, real-time, big data sets (FEOL, BEOL)

- Individual process control, reports, Cp, Cpk, dashboards
- Multi-process Al learning models driving 6sigma quality
- Closed-loop statistical feedback control
- Time series performance monitoring
- Line, cell, site, region insights
- M2M comms/adjustments

World class Ind4.0 data analytics requires industry-wide,

open-source machine data communication protocol eg) IPC-2591 CFX

Issue: Real-time data analytics and statistical process control not widely implemented

- Semiconductor industry data usage highly sophisticated; electronics manufacturing sector significantly lagging
- Many facilities still very manual, data collection is messy, too much data, don't know what to do with it
- IT/OT network integration barriers, difficulties, and security requirements
- E2E operations data analytics implementation VERY LOW → limited by ease of data collection / various formats
- Result: individual process reactive batch data analysis vs E2E process proactive real-time continuous data analysis

Innovation focus: Deeper Data Insights – formats, flows, collection, contextualization, analysis

- Product-level driving forces: quality, reliability, maverick lots, outliers, yields, throughput, efficiency, productivity
- Operations driving forces: line-site-region manufacturing performance, supplier management capability/performance
- Overall data architecture needed for operations and supply chain partners
- How to start: data formats, communication protocols, data mapping \rightarrow apply SPC \rightarrow real-time data consumption
- Critical: ID major quality contributors/indicators; then collect key data parameters for SPC
- Goal: real-time 'health of line' continuous monitoring

Key Messages and Call to Action

Key Messages

Creating reliable hardware designs with digital thread and CAD simulation

- Drivers: rapid NPI cycles, electrical-mechanical co-design improvements, new design rules
- Enables: high quality / reliability through improved electrical-mechanical co-design

Enabling higher placement densities with back-end manufacturing automation

- Drivers: Tighter placement keep-out rules AND tighter tolerances (power/thermal management)
- Enables: precision 3D mechanical assembly as product miniaturization continues

Achieving high quality levels, yields, and throughput with data analytics

- Drivers: product-level and operational performance, faster deeper insights, better decisions
- Enables: proactive real-time continuous data analysis, 'health of line' monitoring

Key Messages

Ind4.0 Factory of the Future

- It's about harnessing multiple advanced technologies and approaches to gain business value
- Requires: highly skilled people, new & conventional tech, and foundational engineering (SPC, QMS)
- North American electronics manufacturing is 5-8yrs behind European and Asian early adopters

Advance and Modernize – Call to Action

- Start today and be implementation focused
- Cut through the hype and apply what matters to design, manufacturing, supply chain management
- Work beyond day to day 'fire fighting' activity; transformation requires forward thinking
- Establish transformation strategy, then use building block approach; 'DON'T BOIL THE OCEAN'
- ID problem → apply solution → must solve real business issues and deliver ROI value
- Invest in new employee skills, systems, approaches, technology, and infrastructure

Thank you. Questions?

Matt Kelly, Chief Technologist IPC

mattkelly@ipc.org | (905) 399 2199