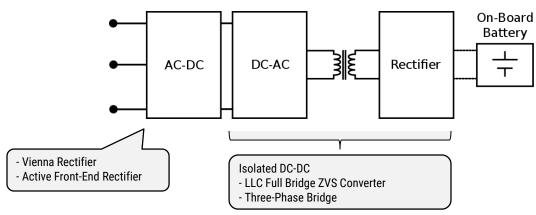
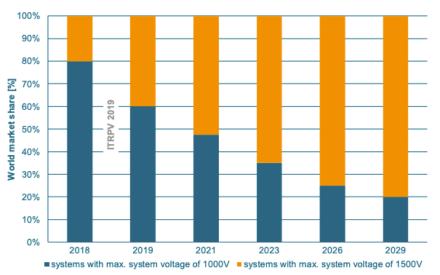


Use of 3300 V SiC MOSFETs and 1700 V SiC diodes in modern applications

Ranbir Singh, Sumit Jadav, Vamsi Mulpuri and Siddarth Sundaresan GeneSiC Semiconductor Inc. www.genesicsemi.com


Fast Chargers for EV demand smaller size

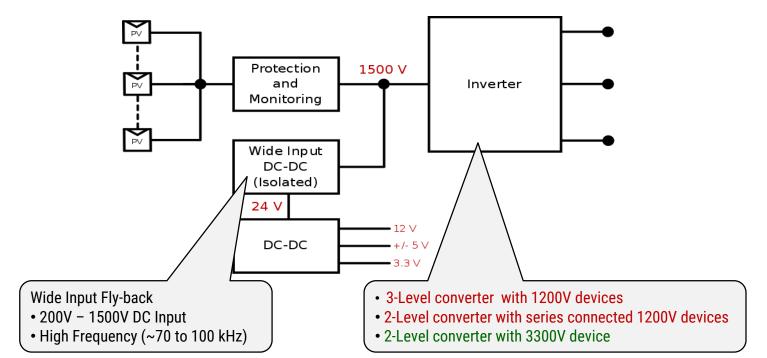
300-400 kW Extra Fast Chargers are becoming ubiquitous


Fast Charging (DC) of Electric Vehicles

- Extreme Fast Charging (XFC) standards have been defined for charging levels above 350 kW and output voltages up to 1000 V DC
 - CHAdeMO Power Class 2.0 400 kW, <u>1000 V DC</u> (Up to 400 A)
 - CCS HPC350 350 kW, 920 V DC (Up to 380 A)
- While majority of standardization process for XFC networks is aimed for heavy duty vehicles like electric trucks and buses, commercial battery electric vehicles (BEV) like Porsche Taycan (800 V on-board battery) are also capable of 350 kW fast charging

Utility Scale Solar String Inverters up to 1500V

Maximum system voltage of new PV systems



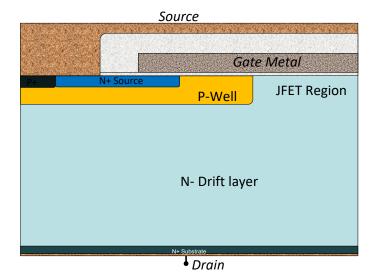
Utility scale solar offers the best CapEx and OpEx rationale; and higher efficiencies

1500 V DC Bus Systems

- PV inverters and motor traction systems are now settling on 1500 V DC bus.
- Such applications demand wide input voltage range (from 200 V DC to 1500 V DC) auxiliary switched-mode power supplies based on Fly-back topology

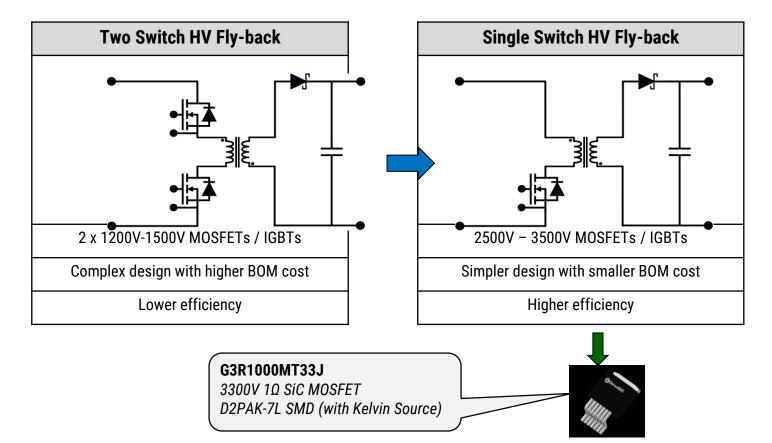
GeneSiC's SiC MOSFET and Schottky Rectifiers Performance

SiC MOSFETs

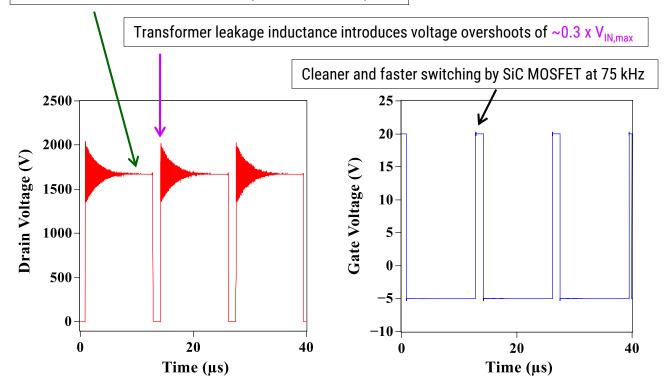

- Lowest Rdson
- Fast, temperature independent switching
- High Avalanche ruggedness
- High Reliability
- Good Short Circuit Capability
- Low Costs at high volumes

SiC Schottky Rectifiers

- Low On-state drop
- Zero Reverse Rcovery
- Low Leakage Currents
- High Surge Current capability
- High Avalanche rating
- Good high temperature capability
- Smallest packaged device footprints
- Low Costs at high volumes


SiC MOSFET Design Considerations

- Low Drain-Source Resistance, RDS,on
- Low Gate Charge, Input and Output Capacitances
- Robust Design for High Avalanche Ruggedness
- Low conduction loss at high temperatures
- Intrinsic diode with low reverse recovery charge
- Low Costs at high volumes


Standard DMOSFETs for highly uniform production and robust and reliable performance

Auxiliary SMPS – 1500 V DC Bus

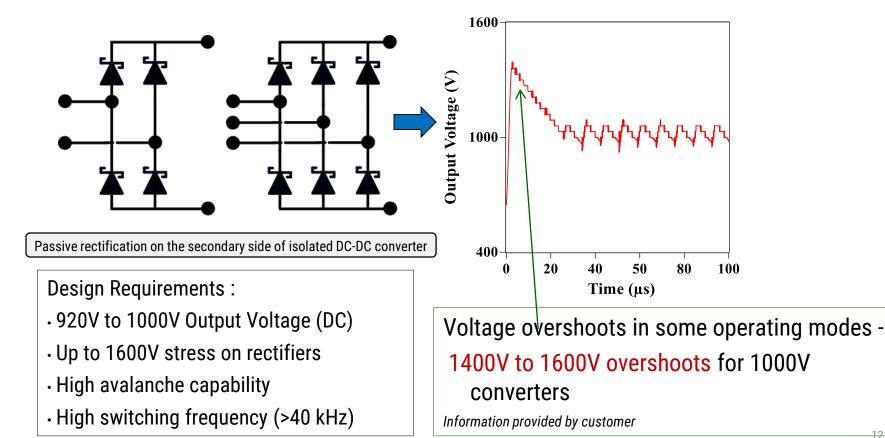
Single Switch Fly-back at 1500V DC

Voltage stress on switch (ideal) = $V_{IN,max} + N^*(V_{OUT} + V_{F,diode})$

3300V 1 Ω SiC MOSFET v/s Competitors

	GeneSiC G3R1000MT33J (3300V 5A)	Competitor 1	Competitor 2	Competitor 3
Device Type	SiC MOSFET (Planar)	Si Power MOSFET	Si Power MOSFET	IGBT
V _{(BR)DSS}	3300V	3000V	2500V	2500V
Package	TO-263-7 (with Kelvin source)	T0-247-3 (HV)	TO-264-3	T0-268-2 / T0-247-3
T _j (Max)	175 °C	150 °C	150 °C	150 °C
I _D (25 °C)	5 A	4 A	5 A	5 A
R _{DS,ON} (25 °C)	1 Ω	12.5 Ω	8.8 Ω	V _{CE} > 3.5 V
R _{DS,ON} (150 °C)	2 Ω	34 Ω	23.5 Ω	V _{CE} > 4.5 V
Avalanche	≥ 3800 V	Yes	Yes	No
C _{iss}	450 pF	3680 pF	8560 pF	145 pF
C _{oss}	10 pF	177 pF	315 pF	8.7 pF
Gate Drive	+ 20 V / - 5 V	+ 10 V	+ 10 V	15 V
Distributor Price	~ \$20 / unit	~ \$51 / unit	~ \$48 / unit	~ \$17 to \$20 / unit

3300V SiC MOSFET Summary


3300V 1Ω SiC MOSFET based Fly-back converter

- ➤ High blocking voltage (≥ 3300 V) for fail-safe designs
- Higher avalanche ruggedness for simpler, rugged designs
- Low devices capacitances and faster switching times
- Low conduction and switching loss
- > Higher current handling capability and cooler operation

Benefits to wide input (up to 1500 V DC) auxiliary SMPS -

- ✓ Simpler design with best-in-class reliability
- \checkmark Elimination / reduced requirements of voltage clamps or snubber circuit
- \checkmark Reduced the size and weight of magnetic components

XFC Requirements

1700V SiC Schottky MPS in XFCs

Features

- ➤ High blocking voltage (≥ 1700 V)
- Higher avalanche and surge ruggedness for simpler, rugged designs
- Zero reverse recovery
- ➤ Cooler operation

Benefits

- \checkmark Simpler design with best-in-class reliability
- \checkmark High switching frequency operation
- \checkmark Reduced the size and weight of magnetic components

1700V and 3300V SiC Devices

V _{DSS}	R _{DS(on)}	Bare Chip	T0-263-7	T0-247-3	T0-247-4
1700 V	1000 mΩ		G3R1000MT17J	G3R1000MT17D	
	45 mΩ	✓			G3R45MT17K
	20 mΩ	✓			G3R20MT17K
	1000 mΩ		G3R1000MT33J		
3300 V 🗍	350 mΩ		G3R350MT33J		
Γ	120 mΩ	✓	G3R120MT33J		

٨PS	I _F	V _{RRM}	Bare Chip	T0-263-7	T0-247-2	S0T-227
SiC Schottky MPS	5 A	1700 V		GB05MPS17-263	GB05MPS17-247	
	10 A				GB10MPS17-247	
	25 A		✓		GB25MPS17-247	
	50 A				GB50MPS17-247	
	100 A					GB2X50MPS17- 227

ARROW ELECTRONICS, INC.

Premier Farnell

