

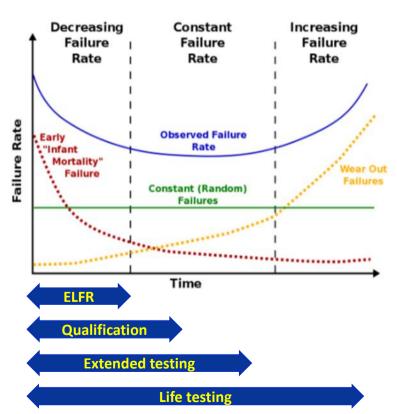
TRANSFORMING THE WORLD

WITH SMALLER, LOWER COST, MORE EFFICIENT POWER ELECTRONICS

GaN Systems Demonstrates Reliability Based on Qualification and Lifetime Data

Dr. Maryam Abouie, Director of Reliability APEC March 2020

Is GaN reliable ?


Gan Systems

- Test theory and approach
- Qualification standards
- Beyond the standards
- Lifetime and FIT
- Industry benchmarks

GaN Reliability

- Independent of market segment, customers require reliable devices
- Standard JEDEC & AEC-Q101 tests are applied as a baseline
- Additional test methods are implemented for the differences between Silicon and GaN
- To assure reliability, GaN Systems tests for both extrinsic and intrinsic failures
- Failure modes and mechanisms are identified using FMEA & test-to-failure methods

GaN JEDEC Qualification: 650V

• GaN Systems successfully achieved full JEDEC qualification on 650V product line.

				Sampl	e size (parts	x lots)			
Test	Conditions	GS66502B 200mΩ	GS66504B 100mΩ	GS66506T 67mΩ	GS66508B 50mΩ	GS66508T 50mΩ	GS66516B 25mΩ	GS66516T 25mΩ	Failures 0
HTRB	T _j = 150°C, V _{DS} = 80%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
НТGВ	T _j = 150°C, V _{GS} = 100%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
nigb	T _j = 150°C, V _{GS} = -100%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
H3TRB	T _j = 85°C, RH= 85%, V _{DS} = 100V, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
тс	-40°C to +125°C, 1000 cycles	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
HTS	T _a = 150 °C, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
IOL	ΔT_j = 100°C, 2 min on, 2 min off, 5k cycles	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
MSL3	T _a = 60°C, RH=60%, t= 40 hrs followed by 3x reflow cycles	77x3	77x3	77x3	77x3	77x3	77x3	77x3	0
ESD	HBM+CDM	30x1	30x1	30x1	30x1	30x1	30x1	30x1	0
Solderability	Dry bake (condition E)	10x3	10x3	10x3	10x3	10x3	10x3	10x3	0

GaN JEDEC Qualification: 100V

• GaN Systems successfully achieved full JEDEC qualification on 100V product line.

		Samp	P - 11		
Test	Conditions	GS61004B 15mΩ	GS61008P 7mΩ	GS61008T 7mΩ	Failures
HTRB	T _j = 150°C, V _{DS} = 80%, t= 1000 hrs	77x3	77x3	77x3	0
НТБВ	T _j = 150°C, V _{GS} = 100%, t= 1000 hrs	77x3	77x3	77x3	0
нібр	T _j = 150°C, V _{GS} = -100%, t= 1000 hrs	77x3	77x3	77x3	0
H3TRB	T _j = 85°C, RH= 85%, V _{DS} = 80%, t= 1000 hrs	77x3	77x3	77x3	0
тс	-40°C to +125°C, 1000 cycles	77x3	77x3	77x3	0
нтѕ	T _a = 150 °C, t= 1000 hrs	77x3	77x3	77x3	0
IOL	ΔT _j = 100°C, 2 min on, 2 min off, 5k cycles	77x3	77x3	77x3	0
MSL3	T _a = 60°C, RH=60%, t= 40 hrs followed by 3x reflow cycles	77x3	77x3	77x3	0
ESD	HBM+CDM	30x1	30x1	30x1	0
Solderability	Dry bake (condition E)	10x3	10x3	10x3	0

GaN AEC-Q101 Qualification

• Select GaN Systems' 650V transistors are qualified to AECQ-101.

				Samp	le size (parts x lot	s)		
Test	Conditions	GS66508B 50mΩ	GS66508T 50mΩ	GS66516B 25mΩ	GS66516T 25mΩ	GS-065-060-5-T-A 25mΩ	GS-065-060-5-B-A 25mΩ	Failures 0
HTRB	T _j = 150°C, V _{DS} = 100%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
HTGB	T _j = 150°C, V _{GS} = 100%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
нібр	T _j = 150°C, V _{GS} =-100%, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
H3TRB	T _j = 85°C, RH= 85%, V _{DS} = 100V, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
UHAST	T _j = 130°C, RH= 85%, t= 96 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
тс	-40°C to +125°C, 1000 cycles	77x3	77x3	77x3	77x3	77x3	77x3	0
HTS	T _a = 150 °C, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
LTS	T _a = -55 °C, t= 1000 hrs	77x3	77x3	77x3	77x3	77x3	77x3	0
IOL	ΔT _i = 100°C, 2 min on, 2 min off, 15k cycles	77x3	77x3	77x3	77x3	77x3	77x3	0
MSL3	T _a = 60°C, RH=60%, t= 40hrs followed by 3x reflow cycles	77x3	77x3	77x3	77x3	77x3	77x3	0
ESD	HBM+CDM	300x1	300x1	300x1	300x1	300x1	300x1	0
Solderability	Dry bake (condition E)	10x3	10x3	10x3	10x3	10x3	10x3	0

GaN JEDEC+ Qualification

- GaN Systems has implemented a JEDEC+ design and test methodology
- The tests incorporate the differences between GaN and Silicon transistors
- Each test was designed based on a specific failure mechanism in FMEA

Test	Test Duration	Failures
Switching HTRB (AC)	1000 hrs	0
HTRB with Negative Gate Voltage	1000 hrs	0
Switching HTGB (AC)	1000 hrs	0
Low Temperature Reverse Bias (LTRB)	1000 hrs	0
Highly Accelerated Stress Test (HAST)	96 hr	0
Low Temperature Storage (LTS)	1000 hrs	0

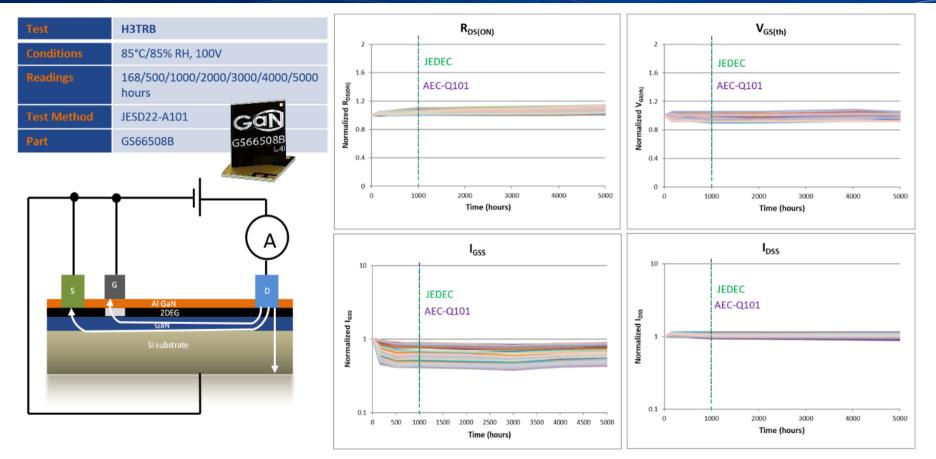
GaN AEC-Q101+ Qualification

- Gan Systems
- AEC-Q101+ product reliability test methods were developed to properly evaluate the differences between GaN and Silicon transistors
- Each test was designed based on a specific failure mechanism in FMEA

Test	Test Duration	Failures
Higher Voltage H3TRB	1000 hrs	0
Dynamic High Temperature Operating Life (DHTOL)	1000 hrs	0
Wider Temperature Range Temperature Cycling	1000 cycles	0
Thermal Shock (TS)	1000 cycles	0
Faster Ramp IOL testing	1000 hrs	0

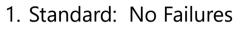
Extended Testing Demonstrates Significant Margin Gan Systems

• GaN Systems increases confidence levels by testing beyond duration requirements

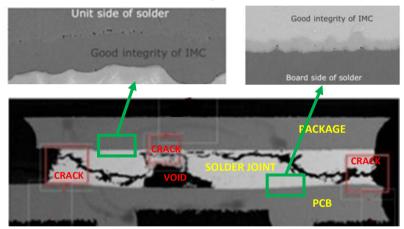

Test	Status	Extended*
HTRB	27,000 hrs (> 3 years!)	27x
LTRB	3,000 hrs	3x
HTGB	5,000 hrs	5x
DHTOL	5,000 hrs	5x
H3TRB	5,000 hrs	5x
тс	5,000 cycles	5x
LTS	3,000 hrs	3x
HTS	4,000 hrs	4x
IOL	70,000 cycles	14x

*Stable performance significantly beyond JEDEC requirement

Extended Qualification testing demonstrates significant margin over standard JEDEC durations


Extended Testing Example

Stable performance over 5000 hours of extended biased humidity


IPC9701 Solder Joint Reliability

- 1000 cycles, -40 to 125°C
- 8 and 12 layer PCBs
- 2. Extended to 2000 cycles: No Failures
 - Good integrity of package intermetallics (IMC) and no cracking through the IMC
- 3. Test to failure
 - Package intermetallics: No Failures
 - Solder joint: Crack originated at solder joint void

Test to failure

• Good integrity, no failure of IMC on both package side and board side after >2000 cycles

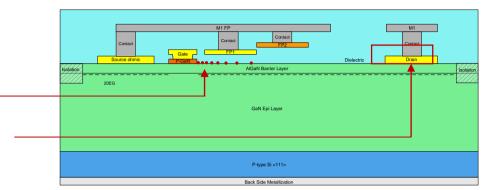
• Crack initiation from a solder joint void after >2000 cycles

Conclusion

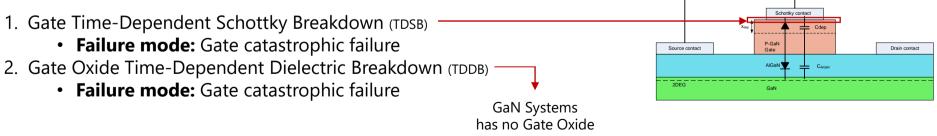
- Lifetime results are similar to standard QFN package
- As with all components, assembly process should minimize solder joint voiding

GaN Lifetime

• GaN Systems' product reliability:

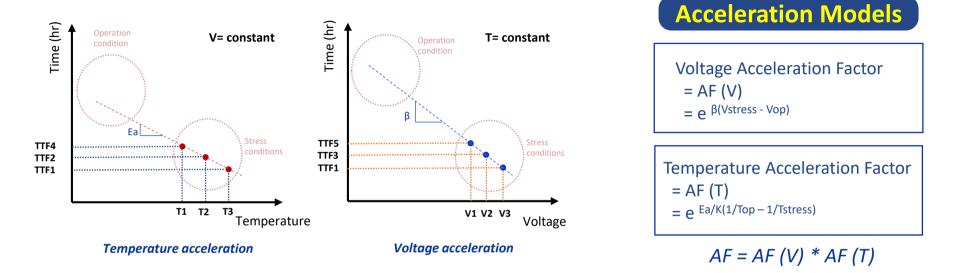

- Device failure modes and mechanisms are well-understood and modeled
- Step stress test results define stress level conditions for life testing
 - Critical to use conditions that achieve the relevant failure in a reasonable timeframe, and at the same time, do not activate any other failure mechanisms
- Voltage acceleration model
 - For reliability and acceleration testing, model can significantly affect the lifetime results
 - GaN Systems uses the most conservative model (Eyring)
 - GaN Systems uses conservative 90% confidence level for life calculations

Failure Modes and Mechanisms

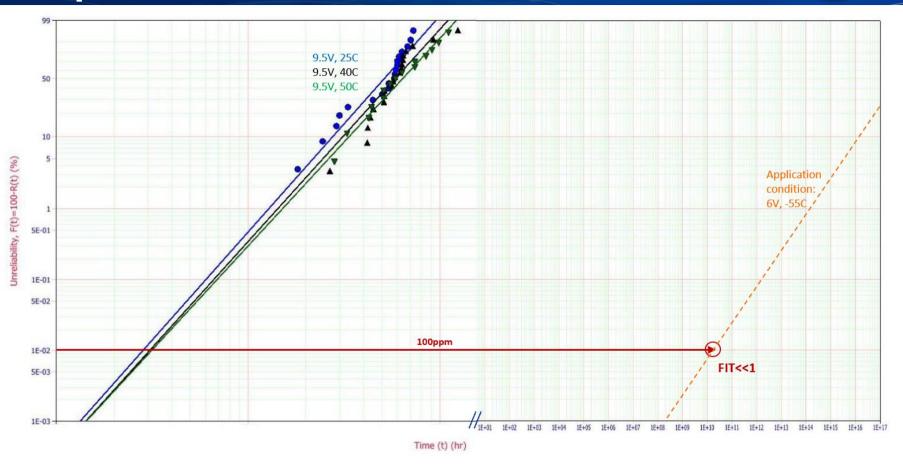

• GaN Systems has identified, modeled and tested different failure modes. Here are four:

<u>Drain</u>

- 1. Charge Trapping
 - Failure mode: Increase in R_{DS(on)}
- 2. Drain Time-Dependent Dielectric Breakdown (TDDB)
 - Failure mode: Drain catastrophic failure


<u>Gate</u>

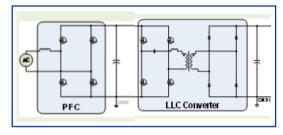
Failure modes are well understood and factored into the product design process

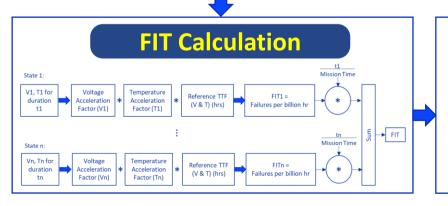

Lifetime Models

- Acceleration Factors (AF) are calculated by plotting: 1) Voltage data at constant Temperature, and 2) Temperature data at constant Voltage
- AF used to determine Failure in Time (FIT) under operating conditions
- The most conservative model was used for these calculations

Example of TDSB Weibull Plots

FIT <<1 for gate failure mechanism TDSB


Mission Profile Example – Datacenter


Gan Systems

Methodology

- 1. Accelerated stress test-to-failure of parts
- 2. Determined acceleration factors
- 3. Define mission profiles
- 4. Calculate FIT for each mission profile

Mission Profile States

FIT Results						
Mission Profile	FIT	MTTF (yr)				
Data Center BT-PFC & LLC DC/DC	0.037	3,076,407				

FIT is <<1 for charge trapping mechanism

Transistor Technology Benchmarking

GaN, SiC and Silicon transistor comparison

ltem	GaN Systems	GaN Supplier 1	GaN Supplier 2	SiC Supplier 1*	Silicon Supplier 1	Silicon Supplier 2
JEDEC						\checkmark
AECQ-101			none reported			\checkmark
AECQ-101+			none reported	none reported	none reported	none reported
JC-70				\checkmark	not applicable	not applicable
FIT	<0.1	<1	5	4	<0.1	3

* FETs, not diodes!

- GaN reliability is on the same order of magnitude as Silicon reliability
- Not all GaN is alike, nor is all Silicon alike

Transistor Technology Benchmarking

GaN, SiC and Silicon transistor comparison

ltem	GaN Systems	GaN Supplier 1	GaN Supplier 2	SiC Supplier 1*	Silicon Supplier 1	Silicon Supplier 2
JEDEC		\checkmark	\checkmark	\checkmark		\checkmark
AECQ-101			none reported	\checkmark		
AECQ-101+			none reported	none reported	none reported	none reported
JC-70					not applicable	not applicable
FIT	(<0.1	<1	5	4	(<0.1	3
L				* FETs, not diodes!		

• GaN reliability is on the same order of magnitude as Silicon reliability

• Not all GaN is alike, nor is all Silicon alike

Transistor Technology Benchmarking

GaN, SiC and Silicon transistor comparison

ltem	GaN Systems	GaN Supplier 1	GaN Supplier 2	SiC Supplier 1*	Silicon Supplier 1	Silicon Supplier 2
JEDEC						\checkmark
AECQ-101			none reported			
AECQ-101+			none reported	none reported	none reported	none reported
JC-70					not applicable	not applicable
FIT	(<0.1	<1	5	4	(<0.1	3
				* FETs, not diodes!		

• GaN reliability is on the same order of magnitude as Silicon reliability

• Not all GaN is alike, nor is all Silicon alike

GaN Systems data summary

- ✓ JEDEC and AECQ-101 baseline
- ✓ JEDEC+ and AECQ-101+
- ✓ Solder joint reliability
- ✓ FIT<1

Conclusion

- GaN reliability has been demonstrated
- GaN exhibits higher performance than SiC and many Silicon transistors