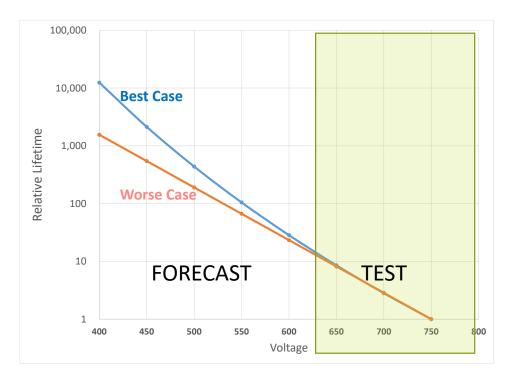
Best Practices Using Voltage Acceleration for Reliability Testing of High Voltage GaN

Ronald Barr and YiFeng Wu APEC 2020

transphorm

Highest Performance, Highest Reliability GaN

- Conservative reliability testing and modeling
- Why do we need to use Voltage Accelerated Testing
 - Si MOSFET example
- Setting conditions for Voltage Accelerated Testing
- Creating a model for Voltage Accelerated Testing
- Early life failure testing/rating
- Switching lifetime
- 900V Qualification Data



Breaking Down the Bathtub Curve transphorm Voltage Acceleration for Reliability Prediction **Extrinsic Reliability** Early Life Failure Intrinsic Reliability Infant Mortality Wear Out Failure Observed **Failure Rate Decreases Failure Rate** <u>Failure</u> Failure Rate with time **Increases with Time** Rate **Constant Failure** Wear **Infant Mortality** Out Time

transphorm Conservative Reliability Analysis

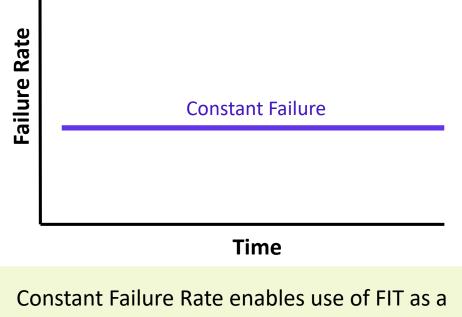
- When more than one model fits the data, pick the model with the "worse" reliability
- Select test conditions that accelerate only one failure mode at a time
- Always pick the lowest acceleration factor that fits the data or model
- ttf_{use} = ttf_{test} * AF
 - ttf_{use}: time to fail use case (application)
 - ttf_{test}: time to fail test conditions
 - AF: acceleration factor

Reliability forecast involves extrapolating device behavior under low stress conditions from high stress test conditions The high stress conditions cannot always be used to select a model......always pick the "worse" case

transphorm Reliability Units: typical targets below <<100 ppm year

PPM / Year	MTBF hours	FIT (Failures per Billion Device Hours)
1	8,760,000,000	0.1
10	876,000,000	1.1
100	87,600,000	11.4
1000	8,760,000	114

Note: these conversions all assume *constant failure rate* that is neither increasing nor decreasing with time. Using these conversions during wear-out or infant mortality are either inaccurate, invalid or misleading



Voltage Acceleration for GaN Reliability Testing Case Study: Silicon MOSFET

Silicon MOSFETs: Temperature Acceleration for Early Life Failures

- Repeat HTRB @ 80% Vds and Tj Max until achieve desired quality level
- Assume Ea = 0.7 eV
- Assume constant failure rate
- No infant mortality
- No voltage acceleration factor
- Only predict ELF at reduced temperatures
- Problem with power devices which are typically used a relatively high temperatures

reliability measure

Silicon Case continued:

How large a sample does it take to test to a FIT of 1?

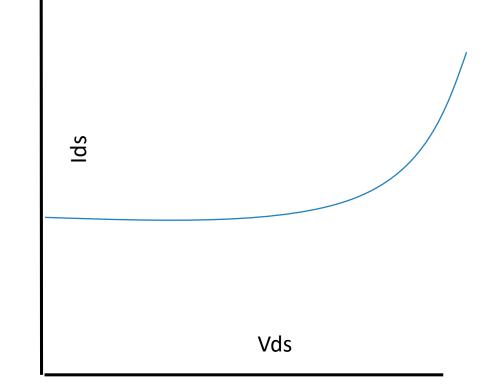
Standard HTRB Testing (Assume 1 FIT)						
Number of Devices per 1000 Hour Test						
Use Temperature (C°) AFt Sample Size						
150	1	915,000				
125	3	273,860				
100	13	69,728				
85	33	27,997				
60	180	5,096				
50	382	2,395				
25	3,151	290				

• AFt=exp [(Eaa/k) X (1/Tu – 1/Ta)]

- AFt: temperature acceleration factor
- Eaa: apparent activation energy: 0.7eV
- k: Boltzman constant
- Tu: use temperature in K
- Ta: acceleration temperature in K: 150+273
- Sample Size = $(10^9 * \chi^2) / (2 * AFt * test-time * #FIT)$
- χ^2 : chi squared statistic, 60%CI, 2df (zero failures): 1.83
- test-time: 1000 hours
- #FIT: target FIT rate: 1.0

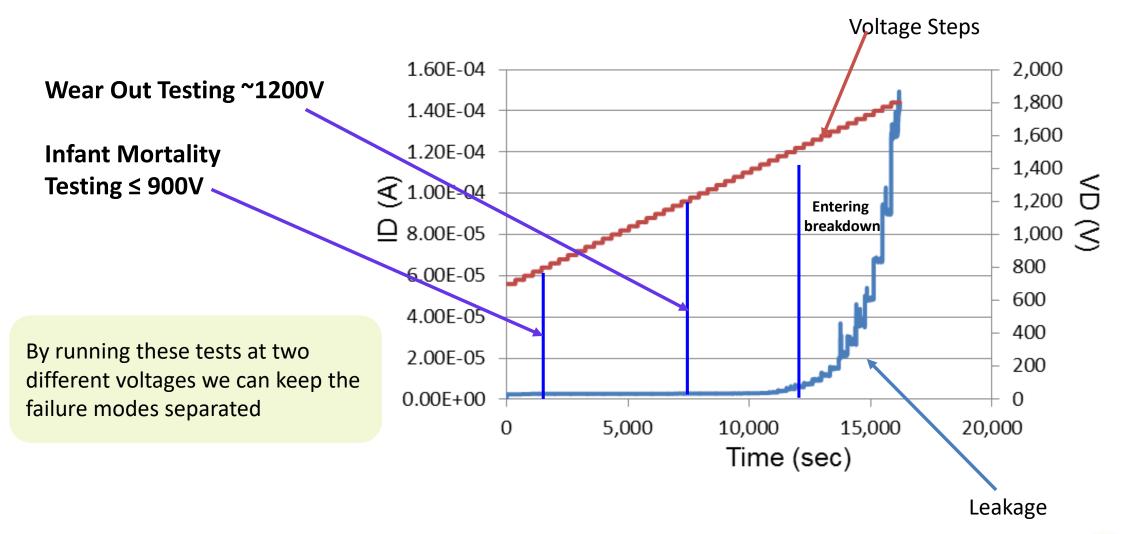
ONLY APPLIES TO SILICON, HOWEVER GAN WILL HAVE SIMILAR PROBLEMS

SOLUTION FOR GAN IS TO USE VOLTAGE ACCELERATION TO REDUCE SAMPLE SIZE

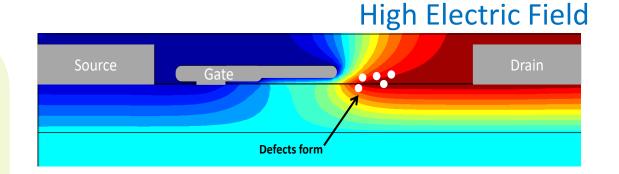


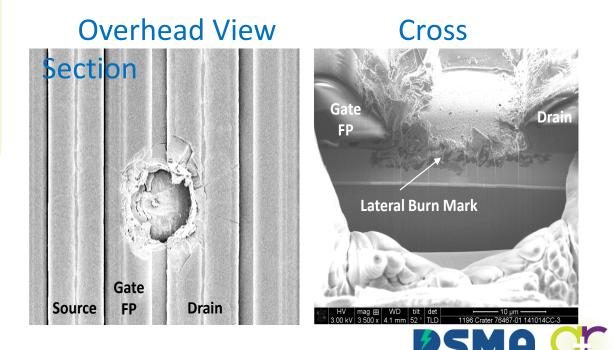
Setting Conditions: Voltage Accelerated Testing and Creating a Model

Picking Voltages Must be Chosen Carefully

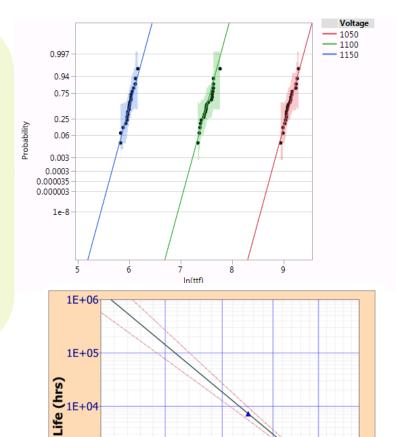

- GaN devices do not avalanche with increased V_{DS}, they leak instead
- Voltages used for reliability studies must be in a "low leakage" region
- Voltage acceleration factors created with variable leakage may be inaccurate, misleading, invalid.

Voltage Settings for Wearout vs. Infant Mortality


Optimized for failure condition being tested



Acceleration Factor Needs to be Calculated Against Known Failure Mode(s)


- Under high electric field defects form in the dielectric
- Dielectric failure allows short from Gate-to-Drain
- Same mode observed in Infant Mortality Useful Life and Wear out
- Failure mode limits the lifetime of the device in most mission profiles

transphorm Voltage Acceleration Factor Determination has Two Phases

- Data Collection
 - Select three voltages minimum
 - Test representative samples
 - Test until ~70% of sample fails (100% preferred)
 - Determine mean time to fail each condition
- Model Building
 - Pick acceleration model
 - Based on physics and/or Conservative Principles

1E+03

1E+02

960

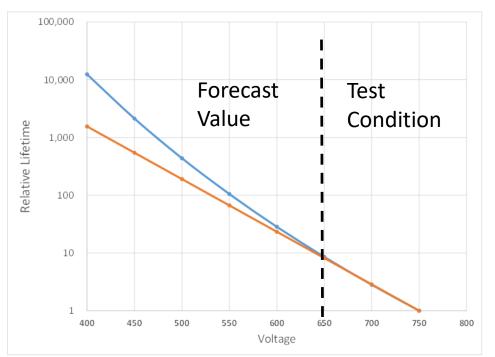
1080

1020

Voltage (V)

1140

1200

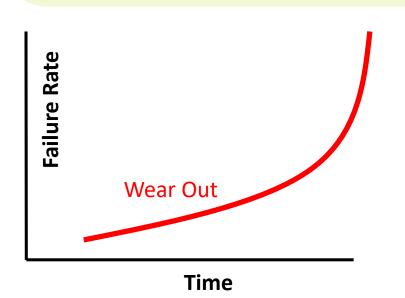

Lifetime Calculations Based on "Power Law" Model May Give a False Sense of Security

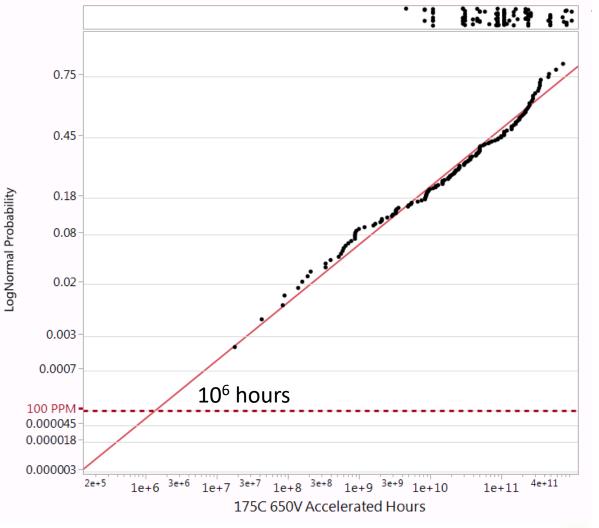
Power Law $AF_{voltage} = (V_{stress}/V_{op})^n$

Exponential $AF_{voltage} = exp[\gamma (V_{stress} - V_{op})]$

RELATIVE LIFETIME			
Voltage	Power	Exponential	
750	1	1	
700	3	3	TEST CONDITIONS
650	9	8	
600	28	23	
550	105	67	
500	438	191	FORECAST VALUE
450	2,127	545	
400	12,446	1,556	

Test data does not let you differentiate between Power and Exponential Models....

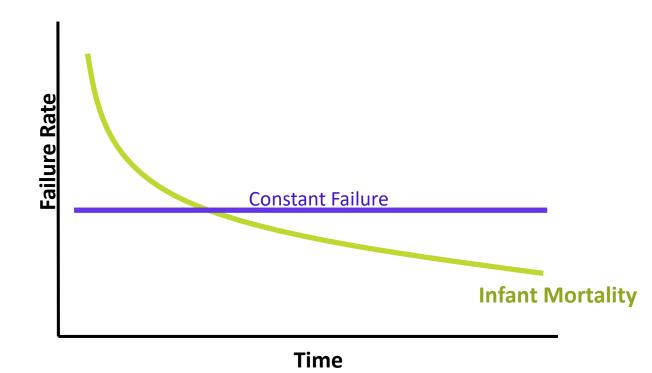

Simulated data using reasonable values for power law and exponential from literature



Create Use Plot

Voltage Data Combined with Temperature Acceleration Data

- AF_{total} = AF_{voltage} * AF_{temp}
- Data from all tests can be combined and normalized to single set of conditions, using the calculated/modeled acceleration factors



Early Life Failure Testing with Voltage Acceleration

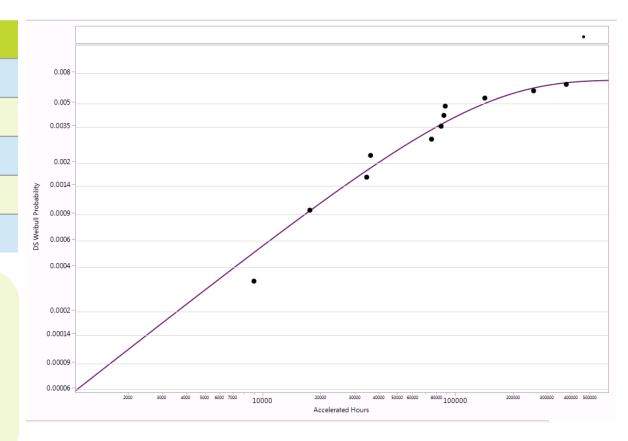
Infant Mortality/Early Life Failures Weibull Shape β Can Have a Large Effect on PPM

Example:

- 1st Year PPM Level
- 1.5 x 10⁹ device hours
- zero failures

β	PPM 1 st year		
1	18		
0.8	43		
0.6	104		
0.4	252		
0.2	606		

Constant Failure Rate Curve is a special case of the Weibull with β = 1.0, but should not be used without supporting data

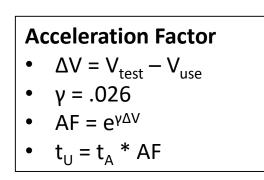


Determine Weibull Shape Parameter (m, β) Using "Blind Build" Testing

Lifetime Testing			
Skipped reliability screening	1200 devices		
Stress conditions	800 V / 85°C		
Continuous monitoring	~1% catastrophic failures		
Fit distribution	DS Weibull		
Calculate shape parameter	β = 1.0		

Early Life Failure Testing:

 Testing how well we screen out those failure from out population. So we need to characterize what those failure would look like if NOT screened out



Voltage Acceleration Test for Infant Mortality Risk

Test Conditions:

- Temperature: 85°C
- Voltage: 800 V
- # of Devices, N= 2200
- Test Time, t_A =500 hours
- Device Hours: 1.1e⁶
- F = zero failures
- d = 2f + 2° of freedom
- c = 60% confidence interval

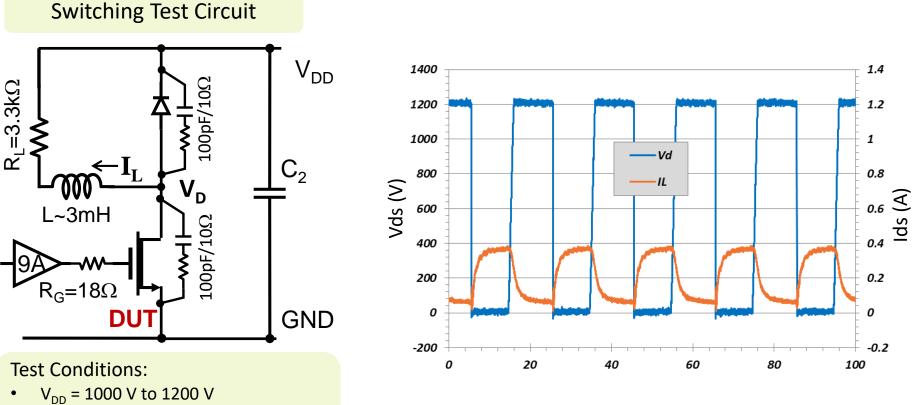
$F(ELF) = Fraction Failing from time = 0 to time = t_{ELF}$

- CDF = $\chi^2_{c,d}$ / 2N Statistical uncertainty
 - $\eta = t_U / ((-\ln[1-CDF])^{1/\beta})$ Weibull Characteristic Time
- F(ELF) in ppm = $10^6 \times (1 \exp(-(t_{ELF}/\eta)^{\beta}))$

Voltage	F (1 st Year) PPM	
520	5.33	
480	1.88	
400	0.24	

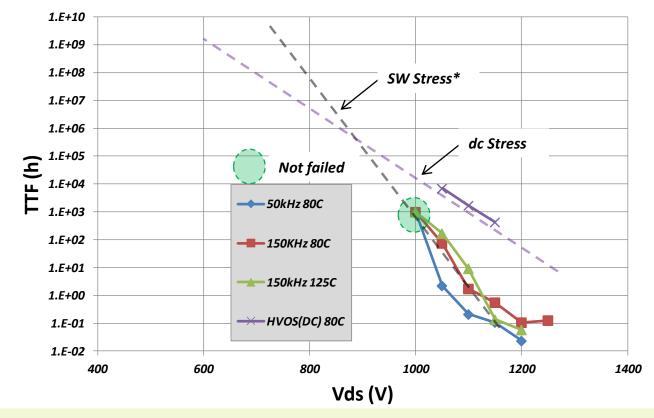
JESD 74A

 Early Life Failure Rate Calculation Procedure for Semi Conductor Components


Samples were taken from ~30 different lots across months of production to sample consistency of the process

Switching Stress Data

Switching Stress Tests Compared to DC Stress



- ٠
- Frequency = 50 kHz, 150 kHz
- Temperature $(T_1) = 80$ to $125^{\circ}C$
 - Focus on switching effect at external current levels ٠
 - Internal switching energy stress is up to 5x higher than at 400V ٠

transphorm

transphorm Switching Stress Tests Compared to DC Stress

- Switching stress test shows steeper voltage acceleration.
- Little dependence on T_J.
- Higher Frequency longer time to failure (TTF)
- *Even conservative projection predicts longer 600V SW TTF than dc.

900 V Product Introduction

First 900 V GaN Device in Production

TP90H180PS

transphorm

900V GaN FET in TO-220 (source tab)

Description

The TP90H180PS 900V, $170\mathrm{m}\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing
 AN0010: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration	
TP90H180PS	3 lead TO-220	Source	

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
 Robust design, defined by
- Intrinsic lifetime tests
- Wide gate safety margin
- Transient over-voltage capability
- Very low Q_{RR}
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
- Increased power density
- Reduced system size and weight
 Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched given its
- switched circuits
- Easy to drive with commonly-used gate drivers
 GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
 Servo motor

Servo	motor	

Key Specifications		
V _{DSS} (V)	900	
V(TR)DSS (V)	1000	
$R_{DS(on)eff}(m\Omega)$ max*	205	
Q _{RR} (nC) typ	49	
Q _G (nC) typ	10	

* Dynamic on-resistance; see Figures 19 and 20

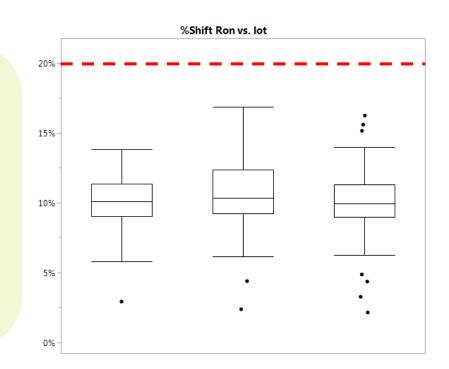
Device: TP90H180PS

- Voltage: 900 V
- On Resistance (typ.): 170 mΩ
- Robust gate: ±18 V
- Package: TO-220
- JEDEC Qualified

Buy Now

All Transphorm devices and evaluation kits are available through Digi-Key.

• TP90H180PS 900V GaN FET in TO-220 (source tab)


November 22, 2017 tp90h180ps.0

24

900 V product passed JEDEC qualification

Device	TEST	SYMBOL	CONDITIONS	SAMPLE	RESULT
TP90H180PS	High Temperature	HTRB	T _J =150°C	3 lots	0 Fails
	Reverse Bias		$V_{DS} = 720V$	77 parts per lot	PASS
			1000 HRS	231 total parts	

- Improve epitaxy and device structures to minimize trapping effect and manage electric field
- Passing HTRB 1000 hours with V_{DS}=720V at 150C
- R_{DS(ON)} shift before and after HTRB is within 17% (beyond JEDEC requirement)

R_{DS(ON)} shift after HTRB1000

Transphorm TP90H050WS Press Release

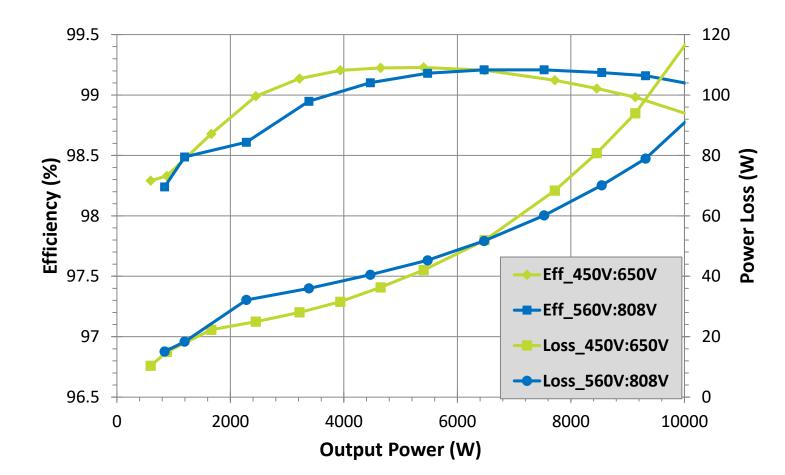
Transphorm Strengthens 900 V GaN Portfolio with Second FET

New Generation III GaN-on-Si FETs Capable of Powering Three-phase Broad Industrial Power Supplies and Automotive Converters

<u>Transphorm Inc.</u>—the leader in the design and manufacturing of the highest reliability high-voltage (HV) Gallium Nitride (GaN) semiconductors—today introduced its second 900 V FET, the Gen III <u>TP90H050WS</u>, enhancing the industry's only 900 V GaN product line. These devices now enable three-phase industrial systems and higher voltage automotive electronics to leverage GaN's speed, efficiency and power density. Further, the new FET's platform is based on Transphorm's 650 V predecessor, the only JEDEC- and AEC-Q101-qualified HV GaN technology. As such, system developers can design with confidence in its quality and reliability.

The TP90H050WS has a typical on-resistance of 50 mOhm with a 1000 V transient rating, offered in a standard TO-247 package. The TP90H050WS can reach power levels of 8 kW in a typical half bridge while maintaining greater than 99 percent efficiencies. Its figures of merit for Ron*Qoss (resonant switching topologies) and Ron*Qrr (hard switching bridge topologies) are two to five times less than those of common superjunction technologies in production—indicating highly reduced switching losses. While a JEDEC qualified version is slated for Q1 2020, customers can design 900 V GaN power systems today.

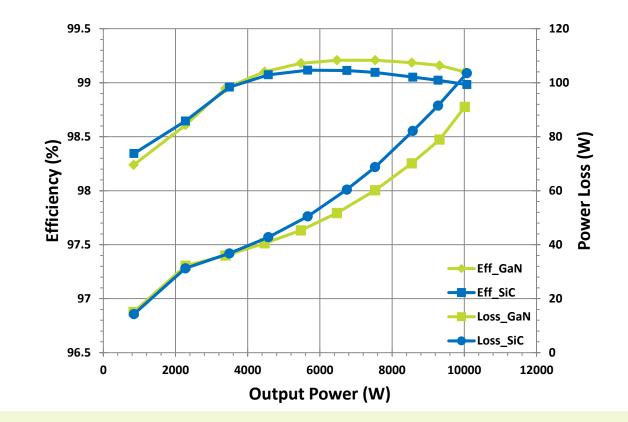
Transphorm's first 900 V device, the <u>TP90H180PS</u>, with a typical on-resistance of 170 mOhm in a TO-220 package is JEDEC qualified and has been available through Digi-Key since 2017. It can reach a peak efficiency of 99 percent, demonstrating its suitability for 3.5 kW single-phase inverters.



56 suitability for 3.5 kW single-phase inverters.

qualified and has been available through Digi-Key since 2017. It can reach a peak efficiency of 99 percent, demonstrating its

Transphorm's 900V GaN Device Half-bridge Performance (Hard switching boost converter at 100kHz)


transphorm

 \checkmark TPH 900 V GaN (50 m Ω) half-bridge operated to > 800 V with 99% efficiency at 10 kW

GaN Exceeds SiC in 800 V Converter Operation Half Bridge Boost Converter: 560 V:808 V at 100kHz transphorm

- GaN shows higher efficiency than SiC in 800 V converter and at a lower cost
- Commercially available SiC MOSFET: 1200 V / 40 mΩ / TO-247
 - Similar on resistance at 125°C

transphorm Conclusion

- Voltage Acceleration Testing Power Tool for forecasting reliability of high voltage GaN devices
- Reliability of new Technology should always be evaluated from a conservative point of view
- Test conditions must be selected so that only voltage (field) is being evaluated
- Voltage acceleration models must also be chosen with conservative view, exponential model as the default
- Early Life Failure must be backed up with appropriate data to determine Weibull parameters
- Switching lifetime is longer than DC prediction and should be used with caution (DC is the default)
- 650V is not the ceiling for GaN! 900V devices have been released

Welcome to the Revolution

transphorm

Highest Performance, Highest Reliability GaN

