

Presentation Outline

- Introduction
- Goals
- The challenge: how to control dv/dt?
- Linearizing Cgd
- Multi-phase current-source gate drive
- Hardware results
- Thermal Performance
- Conclusions
- Acknowledgements

VSI is dominant appliance motor drive topology today

- VSI = Voltage Source Inverter
- Transistor requirements for VSI:
 - Block voltage in forward direction
 - Conduct current in either direction (Can be diode in reverse direction)
 - Short-circuit handling capability
 - Slew-rate can be controlled/limited
 - LOW COST
- Additional performance goals:
 - Low conduction loss (in both directions)
 - Low switching loss (dependent only on dv/dt limit no additional Qrr loss)

Typical 3Ф VSI using IGBTs

Why is slew-rate control necessary for motor drives?

- Typical low-cost motor windings are inserted in overlapping layers
- This results in large voltage gradients between adjacent coils
- Fast dv/dt waveforms can cause insulation breakdown
 - Due to corona and partial-discharge
- Motor bearings can also be damaged due to dv/dt induced capacitive currents
- Typical limit is 5 V/ns
- More expensive motors with concentrated windings may tolerate somewhat faster dv/dt

Motor winding insulation failure due to fast dv/dt

So – why use GaN for motor drives?

- GaN is often considered a very fast, high-performance (but expensive) switch
- Why does it make sense to slow its switching speed and use it at low-frequency in a low-cost motor drive VSI?
 - Package power dissipation limits output power in today's IPMs
 - In the same package, GaN can deliver >2X output power because lower conduction and switching loss than Silicon
 - The value proposition is 2X power density for <2X cost

Nano IPM w/ 1.7Ω FREDFETs

Nano IPM w/ 1Ω GaN

What about short-circuit withstand capability of GaN?

- When driven with the proposed gate drive method, CoolGaN™ has good SCSOA
 - Has a predictable, repeatable current-collapse that reduces I_D similar to IGBT desaturation

Test Conditions:

70 mΩ GaN transistor

350 V Bus

125° C starting temperature

8 µs input pulse-width

Gate drive = 110/10 mA

Infineon is assessing reliability impact of repetitive short-circuit events in a new arpa-e funded program

Goals of this work

- Develop low-cost Silicon 3-phase gate-driver IC for CoolGaN™ that can:
 - Accurately control voltage slew-rate (dv/dt)
 - (on both turn-on and turn-off edges)
 - Eliminate the need for external passive components except for bootstrap cap
 - (because packaging passives in the IPM is expensive)
- Package driver IC with 6 GaN transistors in 12x12 mm PQFN package
- Successfully demonstrate controlled slew-rate motor drive
- Improve power density of existing 12x12 mm MOSFET IPM by a factor of 2

The challenge: how to control dv/dt

For Si IGBT or FET, adjusting gate drive current is common

Simplest way is to adjust Rg

During the "plateau" region, **all** of the gate input current is discharging gate-collector capacitance

So dv/dt = Ig/Cgc

But – GaN has very nonlinear Cgd

■ Thus – the dv/dt is also very **nonlinear for a fixed gate-drive resistor** (current)

The solution: add small linearizing capacitor to Cgd

- Now a simple fixed-time 2-phase gate drive will provide linear dv/dt control
- Gate charge is doubled, but at 16 kHz PWM, it is still so low it is insignificant

Block diagram of gate driver IC (one channel)

dv/dt-Controlled Gate Driver for CoolGaN Steady-State ON Current Linearizing capacitor Turn-ON dv/dt GaN Logic Input Level-Shift **HEMT** Sequencing Isolation Timing Turn-OFF dv/dt OFF-state "Miller" Clamp

Note no negative gate drive is necessary with slower dv/dt and driver IC in same package as GaN

Gate drive circuit provides precise, linear dv/dt control

Excellent dynamic transition from slow dv/dt to controlled commutation

3-phase motor drive test board temperature rise using thermal imaging

Local Max. surface temperature for each device

Q1	Q3	Q5	Q2	Q4	Q6	IC
97°C	105°C	100°C	90°C	91°C	92°C	84.4

Test Condition: Vbus=320V, Ta=25°C, Fsw=16 KHz, 2-phase modulation 1.07 A rms phase-current, 233 W output

Comparing performance results between existing Si vs GaN solution

- All 3 IPMs compared are 12x12mm PQFN package
- All 3 gate driver ICs are made with the same HVJI Silicon process
- The test is:

How much power can each technology deliver with 80° C max temp-rise?

Device	Transistor technology	Rds(on) (typ)	Phase current	Motor power	Increase in delivered power
IRSM836 (existing product)	Trench FREDFET	1.5 Ω	0.23 A rms	50 W	(baseline 0%)
IMMxx-046M (in development)	CoolMOS™	1.4 Ω	0.54 A rms	117 W	134%
GaN with new IC driver prototype	Gen 1 CoolGaN™	0.8 Ω	1.04 A rms	226 W	352%

- GaN with controlled dv/dt driver provides clear power density benefit
- Allowing faster dv/dt will directly reduce switching loss, enabling even higher power

Conclusions

- GaN can be effective solution in low-frequency, slow-dv/dt VSI motor drive
- Switching loss is lower than any competing technology
- Conduction loss can be very low and fit inside IPM due to low specific Rds(on)
- Performance is enabled by low-cost Si gate driver IC in Integrated Power Module
- Smooth waveforms for low EMI signature
- Performance exceeds expectations, >2X power density improvement
- Ongoing work assessing reliability of GaN and SCSOA for motor drive applications

Acknowledgements

 Development of the gate driver IC described herein was partially paid for by a generous grant from the U.S. Department of Energy/ ARPA E award number DE AR0000905

- Support from Infineon arpa-e gate driver project team
 - Alain Charles, Dana Wilhelm, Tim McDonald, Eric Persson, Vazgen Avakian, Se Young Yang
 - Steve Clemente, Andrea Gorgerino, Kim Le, Chuan Cheah, Aung Tu, Jeff Fu

