

The Case for GaN Integrated-Circuits

Edward Lee

Mike Chapman

Ravi Ananth

EPC IC Design Center, Aliso Viejo, CA, USA

GaN Devices: An Introduction

- Enhancement-mode (eGaN®)
 FETs have lateral structures
- Two-dimensional Electron Gas (2DEG) forms bi-directional conduction channel
- Majority carrier flow-direction determined by V_{GS} or V_{GD}
- eGaN FET has no reverserecovery charge trapping like MOSFET

The Merits of GaN Devices

- GaN devices have much smaller $R_{DS(on)} \times C_{IN}$ and $R_{DS(on)} \times C_{OSS}$ than MOSFETs
- No minority carriers, i.e. zero reverse recovery
- For a given R_{DS(on)}, same driver can switch 'ON' or 'OFF' a GaN FET much faster than a MOSFET
- Lower C_{IN} and C_{OSS} means lower switching losses and hence ability to switch at higher frequencies in contrast to MOSFETs

Lateral Build of GaN Devices to Form Circuits

 Multiple FETs, resistors, and capacitors can be built on a process that allows for high-side and low-side circuits

Challenges in Discrete Implementation of the Half-Bridge Power Stage

- Discrete board implementation creates un-wanted resistive and inductive connections between critical nodes such as 'SW', GND, and Gate
- Gate-loop and common-source inductance (CSI), caused by the trace inductance between the FET's source and gate driver, can reduce the V_{GS} applied to the FET due to the source voltage created by the large di/dt

Challenges in Discrete Implementation of the Half-Bridge Power Stage

 Trace resistance between Q1 and Q2's source with respect to their drivers can cause issues with the driver and play havoc on the level-shifted Gate drive for Q1

Challenges in Discrete Implementation of the Half-Bridge Power Stage

- Propagation delays between low-side Q2 FET gate drive and high-side Q1 gate drive are harder to match
- Variation in propagation delays requires larger dead-times between when Q1 and Q2 FETs are turned ON to avoid shoot-through
- Larger dead-time creates larger "diode" commutation losses

Motivation for a Fully GaN Monolithic Power Stage

- Dramatically reduce gate-loop & CSI due to on-chip integration of driver and power FETs
- Minimize resistance and inductance between associated circuit blocks by being on the same substrate or well
- Equalized heat distribution among devices
- Customized driver strength based on size of power FET to minimize over or under shoot
- Minimized PCB layout with optimized IC pad layout and fewer components

Monolithic Power Stage: Input Control

- Input level-translators interface with
 2.2 V or higher voltage level logic controls as well as analog PWM controller output signals up to 12 V
- Differential input structure with hysteresis to maximize immunity to common-mode switching noise
- Process and temperature independent by design
- Fast response down to input pulsewidth less than 20 ns

Monolithic Power Stage: UVLO and Logic

- Under-Voltage Lockout ensures both V_{DD} and floating V_{DDF} are above minimum supply level required to avoid low gate drive level to FETs
- Logic signals for high and low-side
 go through delay-matching blocks to ensure that final Q1 and Q2 gate drive signals have similar propagation delays
- Above matching of delays allows for smaller dead-time settings between Q1 and Q2 switching

Monolithic Power Stage: Synchronous Boot-Strap

- Integrated synchronous-bootstrap
 circuit ensures V_{DDF} is close to V_{DD} level without losing a diode voltage drop
- Internal logic guarantees V_{DDF} not being charged during dead-time to prevent over-charging during negative SW transients
- No reverse-recovery losses incurred during the boot-strap transition
- Robust operation in all transient conditions

Monolithic Power Stage: Level Shifter

- Integrated Level Shifter shifts
 ground referenced HS_{IN} control to logic level referenced to SW
- Operates with negative SW transient to -5 V and immune to dv/dt transients of up to 100 V/ns on SW
- Robust operation under all known transient conditions of SW, from partial ZVS to rapid turn ON/OFF of Q1 and Q2 FETs in both first and third quadrants of operation

Level-Shifter Operation in Various Modes

Monolithic Power Stage: Output Drivers

- Gate driver output proportional to V_t of process (tracks process and temperature)
- Integrated half-bridge with isolated wells
- Q1 and Q2's proximity to highside and low-side gate drivers minimize parasitics
- Tight layout and use of copper routing minimizes CSI and routing resistance

Monolithic Power Stage Layout

Copper Routing

- Layout incorporates isolated high and low-side circuits and copper routing for all power nets
- CSI and routing resistance is negligible compared to discrete implementation on PCB
- Monolithic power stage with Driver + HB-FETs measures only 3.9 mm x 2.7 mm (~10.2 mm²)

Discrete vs. Monolithic Power Stage on PCB

- ~ 35% smaller in size on PCB
- Reduced component count
- Easy to implement and use: Digital In/Power Out

'SW' Node Switching

$$V_{IN} = 48 \text{ V}, V_{OUT} = 12 \text{ V}, I_{OUT} = 10 \text{ A}, f_{sw} = 1 \text{ MHz}, L = 2.2 \mu\text{H}$$

- Switching Frequencies over 1 MHz
- 1ns Switching Time at Rated Load

Efficiency Comparisons of Monolithic vs. Discrete Power Stage

48 V – 12 V Buck Converter Topology

L= $2.2 \mu H$, Air Flow = 800 LFM

Power Loss Comparisons of Monolithic vs. Discrete Power Stage

48 V – 12 V Buck Converter Topology

L= $2.2 \mu H$, Air Flow = 800 LFM

Heat Map of Discrete vs. Monolithic at 11 A for $F_s = 1.0$ MHz

Heat Map of Discrete vs. Monolithic at 6 A for $F_s = 2.5$ MHz

Performance Summary

Comparison Parameter	Discrete	Monolithic
Maximum efficiency and attained current at 1 MHz	95.45% at 7 A	96.12% at 10 A
Load current at power loss of 10 W at 1 MHz	12.8 A	16.6 A
Maximum efficiency and attained current at 2.5 MHz	92.51% at 7 A	93.69% at 10 A
Load current at power loss of 8 W at 2.5 MHz	7.9 A	9.8 A
Normalized PCB area with respect to monolithic PCB	1.35	1.00

Observations and Conclusions

- EPC's eGaN® technology is at a point where integrated circuits are now a reality
- GaN integrated circuits make product designs smaller, easier, and faster to design, while increasing efficiency
- Discrete GaN implementations will become obsolete