

Thermal Packaging Challenges for Next-Generation Power Electronics

Ercan M. Dede

Electronics Research Department Toyota Research Institute of North America Ann Arbor, MI, USA

Applied Power Electronics Conference

New Orleans

March 15-19, 2020

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach
- Conclusions

Characteristics of Wide Band-Gap Devices

- Increased device breakdown electric field
- High temperature operation
- High switching frequency, low switching loss
 - Reduced passive size
 - E.g. inductor, capacitor
 - Higher power density

^{*} Ref.: Ogawa, et al., 2016

Requirements of Next-Generation Packaging

- Packaging strategies that support higher maximum junction temperature: 150 °C → 250 °C
 - E.g. new material systems must be developed for bonding, substrate, encapsulation
- Thermal management techniques that enable higher power density (orders-of-magnitude)
 - E.g. new approaches needed beyond conventional remote cooling techniques
- Careful consideration of package for low parasitic inductance and electromagnetic interference (EMI)

Packaging Trends for Power Electronics

• Historical approaches in automotive:

* Ref.: Broughton, et al., 2018

Multiple layers and single-phase remote cooling dominate applications, but limit packaging breakthrough

Packaging Trends for Power Electronics

• Efforts towards higher levels of integration:

Substrate (e.g. PCB, DBC) Embedding

* Ref.: Wits, et al., 2010

* Ref.: Marz, et al., 2010

New Form Factors & Motor Integration

Device Embedded Cooling

High power density \rightarrow embedding + integration \rightarrow novel packaging and different process workflows

Packaging Trends for Power Electronics

- Future transition to wide band-gap (WBG) devices; e.g., SiC or GaN
 - Device breakdown voltage \uparrow
 - Temperature tolerance \uparrow
 - Switching speed ↑, passive size ↓, power control unit (PCU) size ↓

Trend in device heat flux and cooling technology

Power density drives (conductive path) packaging approach and (convective path) cooling technology

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach
- Conclusions

Near-Junction Cooling – Motivation

- Order-of-magnitude downsizing requires new packaging concepts
 - Package conductive thermal resistance \rightarrow driving factor

Near-Junction Cooling – Concepts

• Three concepts for vertical current WBG devices

Concept A (μChannels Fabricated in Device)

SiC Etching SoA Ref.: Dowling, et al., 2017. DOI: 10.1109/JMEMS.2016.2621131 **Concept B** (µChannels Fabricated in Electrode)

LIGA Microfabrication (lithography, electroplating and molding)

Ref.: Michael.Forman - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php ?curid=7155729 **Concept C** (µChannels Fabricated in Cooling Chip)

Qualitative Comparison of Concepts

	Concept A Concept B		Concept C	
Thermal	0	0	٨	
Performance	0	0	Δ	
Electrical	•	0	0	
performance	Δ	0	0	
Fabrication	^	~	0	
feasibility	Δ	^	0	

Leverage established MEMS microfabrication processes in silicon to explore Concept C cooling chip

Near-Junction Cooling – 1st Prototype Fab

• Straight microchannel prototype fabrication using Bosch process

Multiphysics Simulation

Near-Junction Cooling – 2nd Prototype Design

• Microchannel unit cell design optimized for conjugate heat transfer

Pareto Front of Multi-Objective Design Optimization in 3-D for Thermal-Fluid Problem

SEM Image of 1st Layer Microchannel Structure (Zoomed Isometric View)

*Ref.: Dede, et al. (2014)

Near-Junction Cooling – 2nd Prototype Fab

Straight Microchannel Design

1st Layer

2nd Layer

Optimized Unit Cell Design

2nd prototype cooling chip design is one-quarter footprint size of straight microchannel cooling chip

Near-Junction Cooling – Experimental Results

Toward Order-of-Magnitude Size Reduction

For same ΔP , UC microchannel design supports 3X higher flow rate \rightarrow larger heat transfer coefficient

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach
- Conclusions

Air Cooling – Technology Breakdown

Ultimate simplicity, but inherently poor coolant 1400 - 1.50 kW - 🔶 - 3.75 kW **Near Junction** -- 5.00 kW ---₹--- 6.50 kW CFM1200 Log Scale CF 10.0 Embedded Cooling Air Volume Flow Rate, $Q = \dot{m}C_p\Delta T$ 1000 Air Volume Flow Rate -113 1000 -051-12 800 **Two-Phase Cooling** 100 $= \frac{p_{0.8}\kappa^{0.6}c^{0.4}}{\mu^{0.4}}$ W/cm² DC 331 owable far colanol-45 600 flow rate (50 CFM Liquid Cooling 100 W/cm² Ŵ Air is least 20 400 40 60 100 0.1 Temperature Rise, ΔT , K effective **Active Air** 200 10 W/cm² Cooling 0.01 (h~25-2000 W/m²K) 0 Temperature-'F 20 40 80 100 60 **Natural Convection** 0.01 W/cm² * Ref.: Kim, et al., 1996 Temperature Rise, ΔT , K (h~2-25 W/m²K) Remote

Key technologies for air cooling system

2) Heat spreader

Air Cooling – High Performance Heat Sink

• Optimization of basic 2-D finned element

*Ref.: Dede, et al., 2015

*Ref. : <u>https://en.wikipedia.org/wiki/Fin_(extended_surface)</u>

Application to 3-D heat sink design

E.M. Dede - APEC 2020 - Thermal Packaging Challenges for Next-Generation Power Electronics

Air Cooling – Extreme Heat Spreading

• Efficient heat spreading required to utilize aggressive air cooling

*Ref.: Bar-Cohen, et al., 2015

Thermal Ground Plane (TGP) Concept

Evaporator Porous Structure	Maximum Heat Flux [W/cm²]		Superheat [K]		Heated Area [mm ²]	
Electrodeposited Cu [16]	Generally, increasing heat flux →	>1200	← Generally, increasing superheat	~10	\leftarrow Increasing heated area	0.6
Cu μ-posts + nano-CuO coating [18]		~800		~35		4
Biporous silicon µ-posts [19]		~730		~13		~6
Sintered Cu [20]		~590		~23		25
Biporous sintered Cu [21]		~990		~147		32
Sintered Cu + feed arteries [17]		~580		~72		100
Technology Gap	> 1000		< 35		> 100	

*Ref.: Dede, et al., 2016

E.M. Dede - APEC 2020 - Thermal Packaging Challenges for Next-Generation Power Electronics

Air Cooling – Extreme Heat Spreading

Novel wick structures to enable high heat fluxes

Wick Heat Flux vs. Thermal Resistance

separate liquid feed and vapor vent mechanism

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach
- Conclusions

Transient Liquid Phase Bonding Overview

• Technology benefits

*Ref.: Noguchi et al., 2016

Die Attach Challenges & Higher Compliance Concept

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach

Conclusions

Self-Healing Die Attach Concept

Atomic layer deposition (ALD) fabrication of In-Pt core-shell capsule for material system proof-of-concept

- Characteristics of Wide Band-Gap Devices
- Requirements of Next-Generation Packaging
- Packaging Trends for Power Electronics
- Relevant Future Technologies
 - Near-Junction Cooling
 - Thermal Ground Planes
 - Transient Liquid Phase Bonding
 - Self-Healing Die Attach

Conclusions

Conclusions

- Higher power density requires consideration of embedding and integration
 - Remote cooling fundamentally limits order-of-magnitude size reduction
 - New packaging strategies and process workflows required
- Near-junction cooling explored as ultra-compact packaging paradigm
 - Straight channel and arrayed hierarchical unit cell flow structures explored
 - Unit cell design exhibits reduced pressure drop and higher heat transfer rates
 - Packaging explored as next step → heterogeneous integration
- Air cooling is robust and simple but requires effective heat spreading for high power density application
 - Heat sink optimization coupled with thermal ground plane technologies may be a solution
- High temperature operation bonding materials are critical
 - Transient liquid phase bonding with increased compliance has potential
 - Self-healing die attach may be disruptive technology to increase package reliability

Acknowledgements

- Toyota Research Institute of North America
 - Dr. Shailesh Joshi
 - Mr. Yanghe Liu
 - Dr. Feng Zhou
- Toyota Motor Corporation
 - Mr. Yuji Fukuoka
 - Mr. Masao Noguchi
 - Mr. Naoya Take
- Purdue University
 - Srivathsan Sudhakar
 - Prof. Justin A. Weibel
 - Prof. Suresh V. Garimella
- Stanford University
 - Ki Wook Jung
 - Prof. Mehdi Asheghi
 - Prof. Ken Goodson