Review of Energy Storage Solutions for IoT Edge Nodes

Denis Pasero
Product Commercialisation Manager

APEC Industry Session
10 June 2021
Ilika Solid State Batteries

Stereax
Miniature battery technology for MedTech and Industrial IoT

Goliath
Large format battery technology for Electric Vehicles, Consumer Electronics, Aerospace, Military
Requirements for Edge Nodes Connectivity

- **Cabling:** costly and heavy
- **High and low temperature environments**
- **Small-size unobtrusive, “invisible”, beacons for hard-to-reach places**
- **Low cost of ownership**
- **Reliability**
- **Bio-compatibility**
- **Safety**
Perpetual Beacons

Efficient energy harvesters

Ultra low power electronics, sensors, communication and PMIC

Source: Ref 1

Source: Ref 2

Source: Ref 3
Energy Storage Solutions

Primary batteries
- Li/CFₓ, Li/MnO₂, Li/SOCl₂, Zn air
- Single discharge
- Large capacity to Ah
- Prismatic, D-shaped, Cylindrical
- Highly packaged

Secondary batteries
- Li-metal oxide
- 500-1000 cycles
- 2-5 years life
- To 100s mAh
- Smaller size than primary
- Need packaging

Li polymer
- Primary or secondary
- Gel/Polymer electrolyte
- Footprint in²/cm²
- Thin, Flexible
- Higher cost-to-energy ratio than lithium-ion

Supercaps (battery-free)
- Electric Double Layer
- Very thin (mm)
- Many cycles (>100,000)
- High power
- Low energy density

Solid State Batteries
Rechargeable SOLID STATE
Li-ion Chemistry

No liquid or polymer electrolyte
Won’t leak or explode!

Fabricated using equipment from semi-conductor and MEMS industry

Deposited by single-step co-evaporation;
Patterned by photolithography and etching

Advantages

- Predictable cycle life; high C-rate
- Single-step, low temperature process
- No need for additional post-anneal
- Dense, columnar crystals, with high Li diffusion
 - Stackable cells
Design Considerations

Size and shape

- Device size often dominated by size of battery
- Shapes standardized
- Miniaturisation limited by casing/packaging
- Flexibility: LiPo pouches
- Some customisation:

 Cylindrical
 - Min 2.9 mm dia
 - 1.6 mm thick

 Coin
 - Min 2mm dia
 - 1.6 mm thick

 Pouch
 - LiPo ~500um thick

 SSB
 - ~150um thick

[Image of diagram showing components: Antenna, Solid state batteries, Sensor, Processor, Induction charging bands, and Optimized microfabrication with different area efficiencies.]
Design Considerations

Energy

- Choice between Primary and Secondary
- “Accumulated Energy” = Capacity for one cycle x number of cycles

Primary
- Large size
- Higher cost
- Large capacity
- No need for charging

Secondary
- Small size
- Lower cost
- Lower capacity
- Need wireless charging or EH
Design Considerations

Power / Rate Capability

- Power capability linked to internal resistance
- Power hungry components
 - Communications module
 - Sensors
- Remember quiescent current

Internal Resistance of a Mobile Phone Battery

<table>
<thead>
<tr>
<th>Component</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell, single, high capacity prismatic</td>
<td>50mΩ</td>
</tr>
<tr>
<td>Connection, welded</td>
<td>1mΩ</td>
</tr>
<tr>
<td>PTC, welded to cable, cell</td>
<td>25mΩ</td>
</tr>
<tr>
<td>Protection circuit, PCB</td>
<td>50mΩ</td>
</tr>
<tr>
<td>Total internal resistance</td>
<td>~130mΩ</td>
</tr>
</tbody>
</table>
Design Considerations

Power management

- Increasing number of off-the-shelf ultra low power PMIC
 - Texas Instruments bq25570
 - Analog Devices ADP5091
 - E-peas AEM10941

- Some OEM prefer to design their own ASIC including such functions
 - MICRODUL MA198

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery protection (operational voltage window)</td>
</tr>
<tr>
<td>Output voltage conversion: 3-4V → useful voltage</td>
</tr>
<tr>
<td>Regulate input current and voltage (Energy Harvester)</td>
</tr>
<tr>
<td>Mm-scale footprint</td>
</tr>
<tr>
<td>Low quiescent currents</td>
</tr>
</tbody>
</table>

100 μAh SSB @ 3.5V

+40% @ 1.8V
Design Considerations

Packaging and PCB mounting

- Conventional batteries need holders and connectors
- SMD solder-reflowable components: MLCC-type
- Other methods:

 SSB
 - Conductive epoxy
 (Ag / Carbon; room temperature)
 - Wire-bonding
 (room temperature; Ag/Pt)

In test:
- Anisotropic Conductive Films
 (acrylic resins <160°C)
- Hi-res Printed Inks
 (low heat)
Design Considerations

Operational Life

- Design battery around cycle life requirements and Depth of Discharge
 - Over-design of battery if possible
 - Reduce use case (smaller DoD; frequent recharges)
 - Low-power electronics
 - Trickle charge via energy harvesting for max life cycle
 - Depends on temperature
 - Depends on C-rate

- Conventional LIB: 500-1000 cycles
- SSB: 1000-2000 cycles
- Supercaps: 10,000s
Energy storage components self-discharge via leakage current – Only partially recoverable

During unused periods; Non-Zero loads and switches; Shorts

Quiescent current contributions:
- **Communications**
- **Sensors**
- **MCU sleep mode**
- **PMIC**

Medical cylindrical batteries have Zero-volt technology

Energy source

<table>
<thead>
<tr>
<th>Energy source</th>
<th>Leakage current level</th>
<th>Yearly loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid state batteries</td>
<td>1nA</td>
<td>10μAh</td>
</tr>
<tr>
<td>Pulse caps</td>
<td>10nA</td>
<td>100μAh</td>
</tr>
<tr>
<td>PMIC</td>
<td>100nA</td>
<td>1mAh</td>
</tr>
<tr>
<td>Supercaps, coin cells</td>
<td>1μA</td>
<td>10mA</td>
</tr>
</tbody>
</table>

Ref 1
Call to action

EVALUATION
Evaluate Stereax standard products

CUSTOMISATION
Ilika can design a battery to fit your requirements

PROTOTYPING
Ilika can provide low volumes of batteries for prototyping, internal testing, field trials
Or you can take a license to have the batteries manufactured

MANUFACTURING
Ilika is transferring its solid state battery technology to foundries
Thanks a lot for your time and attention!

Any questions and/or comments?

www.ilika.com

Contact: info@ilika.com

@ilikaplc

/ilika-plc
Unit 10a The Quadrangle, Abbey Park Industrial Estate, Romsey SO51 9DL
Tel: +44 (0)23 8011 1400
www.ilika.com