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Summary
In this project we have explored the feasibility of a method to generalize square-wave
core-loss data to predict core loss with any common rectangular voltage waveform,
proposed by Herbert [1].

The hypotheses to be tested is that, for rectangular pulses and a given magnetic core
material, the core loss energy per period depends only on component pulse widths and
peak voltages. We call this the composite waveform hypothesis. It has great intuitive
appeal, and if true, it makes it convenient to decompose rectangular waveforms into
such pulses for analysis. Thus, it would be be sufficient to test cores with square
voltage waveforms, and then use the data to predict losses with generalized rectangular
voltage waveforms.

Two important objectives of the project are to

1. Gather such square wave data for two typical core materials, one ferrite and one
powdered-iron.

2. Gather additional data to determine if the composite waveform hypothesis is
valid.

The square wave data were gathered for a set of data points at intervals that would
be practical for manufacturers to provide for designers—five values per decade for both
peak voltage and pulse width.

The validation data were measurements for non-square-wave composites of “stan-
dard” pulses from the square wave data set. We used three variations: (1) symmet-
ric waveforms formed from a standard pulse shape with varying amounts of off-time
added, increasing the period, (2) families of standard pulse shapes with set off-time,
but varying the asymmetry, and (3) asymmetric waveforms with no off time, formed
from two different standard pulse shapes.

It was clear from the large size of the sample space implied by this program, that an
automated data gathering system would be needed, so computer control was designed
in from the start. A data management system evolved that can generate a set of control
input parameters for the test setup for all data points from a few global parameters, and
then analyze the results.

The drive circuitry was designed to cover a wide range of flux density and fre-
quency, consistent with budget constraints, by using existing experimental circuit boards.

The results indicate that the composite waveform hypothesis, while not perfect,
performs well, and should be a significant improvement over the use of sinusoidal
data for PWM design. The deviations from composite waveform model may provide
valuable insight into the loss processes, and future work to characterize this behavior
can likely improve the model and its value for design.
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Preface
Most of the content of this report was taken from a paper to be published in the pro-
ceeding of the IEEE Applied Power Electronics Conference for 2010. I have added
more detailed information the help with a practical understanding of the data gathering
system and the use of the data.

John H. Harris
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1 Introduction
Core-loss data published by core manufacturers is based on sinusoidal excitation, whereas
most applications in switching power supplies and other types of power electronics cir-
cuits use rectangular voltage waveforms. Rectangular waveforms can be described
by the voltage, period, and duty cycles of the positive and negative portions of the
waveform. This leads to a wide diversity of different possible test conditions, and it
is not practical for manufacturers to test all possible waveforms that might be used
by customers. Approximate methods to estimate expected core loss with rectangular
waveforms based on sinusoidal data [2]–[9] exist, but are difficult to use, are inherently
limited in accuracy, and are not in wide use in industry.

In this project, we investigate a new approach that uses a simplified set of square-
wave measurements to produce easy-to-use data that can be applied to calculate loss
for any rectangular-voltage waveform. This approach is expected to provide higher
accuracy than is possible starting from data based on sinusoidal waveforms, and is
expected to be easier to use than existing methods for non-sinusoidal waveforms. The
method can be applied to computerized optimizations or in hand calculations using
graphical data. Although the data required is different from conventional sinusoidal
measurements, the amount of data needed is no more than the amount of data collected
in traditional loss characterization.

In order to implement and evaluate the new method, we have developed an au-
tomated excitation and data collection system under computer control. This allows
rapidly gathering the proposed square-wave characterization data set, and also facili-
tates scanning through other rectangular waveform sets in order to assess the accuracy
of the generalization from the characterization data.

Previous methods for predicting core loss with rectangular waveforms based on si-
nusoidal data are reviewed in Section 2. The new calculation method is described in
Section 3 and the measurement system in Section 4. Measurement results are presented
and used to assess the accuracy of the method in Section 5. Hysteresis loops are plotted
and discussed in Section 6. A guide to applying the method in practical design is pro-
vided in Section 7. Section 8 further discusses the future application and improvement
of this approach. Section 9 discusses the use of the accompanying data sets, and the
appendix gives detailed information about data file formats.

2 Previous Methods for Core Loss with
Non-sinusoidal Waveforms

For sinusoidal waveforms, loss is often estimated by a power law equation [10, 11]

Pv = kfαB̂β (1)

where B̂ is the peak flux amplitude, Pv is the time-average power loss per unit volume,
and f is the frequency of sinusoidal excitation, and k, α, and β are constants found by
curve fitting. A similar equation, but without the frequency dependence, was proposed
by Steinmetz in 1892 [12], and so (1) is often referred to as the Steinmetz equation.
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Unfortunately, the Steinmetz equation, as well as the data provided by manufactur-
ers of magnetic materials, is based only on sinusoidal excitation, and non-sinusoidal
waveforms result in different losses [2, 3, 6]. DC bias can also significantly affect loss
[13, 14, 15].

More detailed models, based on physical phenomena producing loss, have been
studied [16]–[19].

However, especially for ferrites, there is not yet a clear consensus on a practical
physically-based model that properly includes dynamic and nonlinear effects [6].

Initial attempts to make use of Steinmetz-equation parameters and extend the cal-
culation to address arbitrary waveforms allowed improved loss estimates, but have sig-
nificant limitations. The “modified Steinmetz equation” (MSE) [2, 3, 4] works well for
waveforms with small harmonic content, but exhibits anomalies with large harmonic
content [6], as does the model introduced in [5], as discussed in [7]. The “generalized
Steinmetz equation” (GSE) was introduced in [6] to overcome anomalies in the MSE,
and although it overcomes the problems with the MSE, it has poor accuracy in some
regions [7].

A satisfactory method of using Steinmetz-equation parameters to roughly estimate
loss with non-sinusoidal waveforms, the “improved generalized Steinmetz equation”
(iGSE) was introduced in [7]. The same equation was independently discovered in
[8, 9], where it was called the natural Steinmetz extension (NSE). Comparisons of
different approaches in [25] confirm results in [7, 8, 9] showing that this method can
work well in many situations.

An additional refinement introduced in [7] is to decompose a waveform that in-
cludes minor loops in the hysteresis curve, and separately analyze the loss in each
minor loop. This was shown to be essential for accurately modeling such cases. An au-
tomated algorithm is described in [7] to perform this decomposition, but is unnecessary
for waveforms without minor loops.

Despite these improvements, the iGSE remains an approximate prediction method,
and, in particular, is dependent on the accuracy of the underlying Steinmetz model for
sinusoidal loss. Unfortunately, the best-fit Steinmetz parameters are known to vary
with frequency [26, 6]. For waveforms with a harmonic content over a wide frequency
range, choosing the appropriate parameters can be problematic [6]. Some solutions
to this problem that work for sinusoidal waveforms (e.g., [26, 27]) are not applicable
with the iGSE. Summing several power-law terms is one option that can be used to
better capture the wide-range frequency behavior while retaining compatibility with
the general approach of the iGSE, at the price of additional complexity [8].

The approach in this project is to directly measure loss with square waveforms,
rather than trying to extend data from sinusoidal loss measurements to square wave-
forms. The advantages relative to the iGSE and related methods are both simplicity
and accuracy. The challenge to developing such a method is to be able to take data for
a reasonably constrained set of parameters, and be able to use the results to predict loss
for a wider range of practical waveforms. This is discussed in the next section.
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Figure 1: Waveforms (voltage vs. time): parameters and test waveform types. Square
waves are used for characterizing materials; the other test waveforms are used to test
the validity of the composite waveform hypothesis.

3 Calculating Core Loss from a
Simplified Data Set

Consider a core with voltage waveforms such as those shown in Figure 1, typical of
power electronics applications, applied to a winding. The flux in the core will ramp up
or down during each positive or negative voltage pulse, respectively. We hypothesize
that the energy loss incurred during each of these flux transitions depends only on
the amplitude and duration of the pulse, and that there is no loss during periods of
zero applied voltage (constant flux). If this is the case, we can decompose any of the
rectangular waveform types shown in Figure 1b into a set of two pulses, calculate the
energy loss associated with each pulse, and sum them to find the total energy loss per
cycle. We call this hypothesis the composite waveform hypothesis.

If the composite waveform hypothesis proves to be a good approximation, we can
predict core loss for any of the waveforms in Figure 1b if we know the loss for a square
pulse as a function of its amplitude and duration. While we might estimate that loss
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from sinusoidal data using one of the methods describe in Section 2 ([2]–[9]), a more
accurate approach is to collect measured test data with square voltage waveforms, for
which we can assume that the loss associated with each pulse is one half of the per-
cycle energy loss. This requires data as a function of two parameters, such as flux
amplitude and frequency, as used in conventional sinusoidal loss characterization. The
parameters may also be described in terms of applied voltage per turn (corresponding
to flux ramp rate) and on-time t1 (one half the period for square waves).

The method we propose starts with characterizing a core material by measuring
loss data for square waveforms. One half of the measured energy loss per cycle is the
energy lost for a single pulse of the applied amplitude and on-time. If the composite
waveform hypothesis is accurate, the same loss per cycle will be incurred for that ap-
plied voltage and on-time in any composite waveform. For the waveforms we consider
here (Figure 1), the waveform comprises two pulses. To find the total energy loss per
cycle one sums the per-pulse loss data for each of the two sets of pulse parameters
(amplitude and on-time) from the corresponding square-wave measurements.

In Sections 4 and 5 we report on experimental measurements conducted for two
purposes: (1) to collect square-wave data for sample cores as is necessary for this
method, and (2) to assess the accuracy of the method and of the composite waveform
hypothesis. We note that all of the previous methods for predicting loss with non-
sinusoidal waveforms discussed in Section 2 depend on some version of the composite
waveform hypothesis, even though this assumption is rarely stated. Thus, tests of this
hypothesis are important for other approaches to predicting non-sinusoidal losses as
well as for validating the approach proposed here.

Predictive core loss models built up from fundamental physical principals are not
available for most core loss mechanisms, and so theoretical analysis of the compos-
ite waveform hypothesis is not possible. However, for core loss produced purely by
classical eddy-current effects, physical models are well established, and analytical so-
lutions exist for some geometries. It can be shown that, for classical eddy-current loss
in core material layers thicker than or comparable to an electromagnetic skin depth,
the composite waveform does not always hold exactly. However, it may still be a use-
ful approximation, and may hold exactly for other types of losses. Thus experimental
evaluation is needed to assess its utility.

4 Measurement System
We use a two-winding loss measurement [9] on toroidal core samples with 5 or 21
turns to match core characteristics to our drive system capabilities. The drive winding
is connected to a full-bridge switching network through a 320 µF blocking capacitor
(Figure 2). The gates of the four MOSFETs are controlled by an Agilent 33220A ar-
bitrary waveform generator through a logic circuit and optically isolated gate drivers.
Both the arbitrary function generator and the DC power supply feeding the bridge cir-
cuit are automatically controlled by a computer to allow synthesis of a sequence of
different rectangular voltage waveforms. The principle components used in the circuit
are summarized in Table 1.

The Agilent waveform generator has only one arbitrary waveform output (labeled
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+ v
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Figure 2: Full-bridge excitation circuit. The device under test, a magnetic core, is
labeled DUT.

OUT

SYNC

OUT   SYNC

OUT  SYNC

Figure 3: Decoding two drive signals from the OUT and SYNC waveform generator
outputs.

OUT), but we have two phases of the bridge to be driven. We could generate a bipolar,
three-level output from the arbitrary output, but then we would be using an analog rep-
resentation of an essentially digital phenomenon, which introduces unnecessary trim-
ming and level-shifting design compromises. Instead, by using a properly chosen OUT
signal, gated with the generator’s TTL square wave synchronization output (SYNC),
we can get two independent but synchronized digital pulse trains: one is OUT∧ SYNC,
the other OUT ∧ ¬SYNC (Figure 3). This is accomplished with just a few logic gates,
and can produce all of the D < 1 waveforms. The asymmetric D = 1 waveforms can
be generated with the same gates by switching to the OUT signal alone (i.e., holding
SYNC high). The square wave can be made several different ways; we use holding OUT
high, which gives SYNC and ¬SYNC.

Dead time protection is hardwired for reliability. The dead-time circuits are hand-
trimmed to get optimal waveform fidelity.

Current in the drive winding is sensed with an Agilent DSO 7104A oscilloscope
with a Tektronix P 6021 wideband passive AC current probe. The AC probe avoids the
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Table 1: Devices for the Drive Circuitry.

Function Description Value
Power supply. Sorenson XG33-25 33V, 25A
Switching MOSFET. IR IRF 3706 20V, 77A
Opto-isolated gate drive. Avago HCPL-3180 2.5 A, 250 kHz
Blocking capacitor. AVX FFV3 2× 160 µF
Power supply decoupling capacitor,
high capacity.

electrolytic 2× 120mF

Power supply decoupling capaci-
tors, low Z.

X7S surface mount 10× 10 µF

delay inherent in an active current probe; delay measurements verify that the delay is
negligible. Flux is calculated from the voltage vs across a sense winding. These signals
are acquired by a digital storage oscilloscope under computer control to automatically
collect waveforms from a sequence of measurements. After the waveforms are allowed
to reach steady-state, 512 periods are averaged, and the average is recorded with 1000
points per period. Core loss and other parameters are calculated off line from the
acquired data.

The core temperature was controlled by immersion in a heated oil bath. All the
results reported here are for an oil-bath temperature of 80 ◦C. The automated data
collection allows acquiring data for a single excitation in less than two seconds; a
pause of about two seconds precedes the next excitation. Even without the oil bath,
this results in very little temperature rise; with the oil bath, temperature deviations are
negligible.

For verification of the test system, a large air-core toroidal transformer was con-
structed. This would, in principle, provide a zero-core-loss reference. However, large
stray capacitance in the transformer led to excessive ringing in the waveforms and neg-
ative power dissipation numbers. Future work will develop a better reference design to
allow a useful air-core test.

4.1 Data Flow

The data were generated using an automated system (Figure 4). The apparatus is con-
trolled, via a local area network (LAN), by a program named Coreloss, which has a
graphical user interface. It is the experimenters primary interface with the setup.

Initially, the experimenter edits a file describing a batch of runs in terms of a few
general parameters, using a text editor. This is processed by a program named Gen-
runs, that generates a table of run parameters defining the setup of the experimental
apparatus for each run. This file can be opened from the Coreloss program and the
user can execute any single run (For exploratory work, single runs can be edited before
running), or all the runs can be executed sequentially and automatically. All the square
wave data used to characterize a given core can be gathered in about half an hour.
Further processing of the raw data is accomplished off line.
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Figure 4: Block diagram of the experimental apparatus.

An experimental run is a data sample of one waveform shape, with a given t1, T ,
Vps, and perhaps other parameters, depending of the type of waveform. Experimental
runs are grouped in families, several runs that vary one parameter while holding others
constant.

A number of files are generated in the process of conducting the experiments. Fig-
ure 5 is a Petri diagram of the information flow. For the sake of data management, runs
are also grouped in sets. A set is a batch of runs described in a single data file with the
name set-gen.dat, where set is the set identifier.

The Gen-runs program reads the input data set file, and creates a file named
set-runs.dat, a table which describes each individual run, to be read by the Coreloss
program, which operates the apparatus. Each run has a run ID number. The oscillo-
scope, under computer control, measures the resulting voltage and current data, and
records it in files named set-run.csv, where run is the run number. These CSV
files are the raw data for the experiment.

There are other files that provide diagnostic information. The files names and field
names and their interpretation are presented in Appendix A. The file formats are de-
scribed in Appendix B.

4.2 Preferred Values
In order to make the data easier to plot and use, we chose values of voltage-per-turn
and pulse width in geometric series. The software application programming interface
(API) deals with integer decilogs—integer values of 10 log10 x (i.e., like decibels, but
not restricted to power measurements). Our reference levels are 1 volt per tune, and
1 ampere. For the present project, points were even-integer decilog values, correspond-
ing to the sequence x = {1, 1.58, 2.51, 3.98, 6.31, 10}. Note that we chose excitation
voltages to be preferred per-turn values, so that data could be compared for coils with
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Gen-runs

program

Coreloss

program

apparatus

LANset-gen.dat

set-gen.log

set-runs.dat

set-001.csv

set-002.csv

Datscanf

program

set-001.png

set-002.png

set-runs.log

.
.
.

.
.
.data.matoutfile.csv

Figure 5: Petri diagram of the experiment data flow. Circles are channels (files or
network), boxes are processes.

Table 2: Sample cores.

Manufacturer Part Material Turns, N
Magnetics 42206-TC R ferrite 5
Micrometals Inc. T80-52 -52 iron powder 21

differing N—the preferred values above may be hidden behind a factor of N .

5 Experimental Results
Two sample cores were tested: one ferrite core and one powdered-iron core, as listed
in Table 2.

5.1 Characterization
Figure 6 presents square-wave loss data in two different formats for the ferrite core.
Figure 6a uses a format similar to that used for sinusoidal loss data on many datasheets.
Figure 6b shows a Herbert curve in which core loss is plotted as a function of on-time
(t1 in Figure 1a), parameterized by the voltage per turn during that on-time [1]. The
Herbert curve is convenient for use in design as discussed in Section 7; in addition, it
directly illustrates the effect of period on power loss and can help guide the choice of
switching frequency. Starting at a low switching frequency, increasing frequency (and
thus reducing the pulse width) decreases losses, but beyond a certain frequency, further
increases not only result in diminishing returns, but actually increase core losses. This
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point corresponds to pulse widths of 1.5 to 3 µs for the ferrite material tested, and
thus periods of 3 to 6 µs, and square-wave frequencies of 167 to 333 kHz. This is
generally consistent with the behavior seen in plots of “performance factor” B · f for
fixed power loss provided by some manufacturers [28, 29, 30]. However, the frequency
beyond which performance degrades is lower in our data than in plots of performance
factor for the same material (about 600 kHz [28]), presumably because of the harmonic
energy content of the square-wave excitation.

Square-wave loss data for the powdered-iron core is shown in the same two formats
in Figure 7, and shows similar trends though the values are different.

5.2 Verification

Additional data was collected to assess the accuracy of the method described in Sec-
tion 3 for predicting loss for other waveforms using only data from square-wave mea-
surements. The first category of these tests is experiments using asymmetric wave-
forms as shown in Figure 1b (upper right). The results of these experiments are plotted
in Figure 8. Each curve is for fixed width and amplitude of the first pulse (fixed V1

and t1 as defined in Figure 1a) with the width of the second pulse (t2) varying. The
amplitude of the second pulse was adjusted for zero average voltage. The widths and
amplitudes were all chosen to match data in the original characterization data set such
that no interpolation was needed to predict loss, and the energy loss per cycle could be
predicted from two points in the characterization data: the energy loss per cycle for a
square wave of amplitude V1 and half-period t1 (Esqr(V1, t1)) and the energy loss per
cycle for a square wave of amplitude V2 and half-period t2, as

Ec =
1
2

(Esqr(V1, t1) + Esqr(V2, t2)) (2)

The measured asymmetric waveform loss is compared to loss predicted from (2) in Fig-
ure 8, showing excellent matching over a wide range of asymmetry ratios (t1/T ) and
amplitudes, for both the ferrite core and the powdered iron core. This confirms that the
composite waveform hypothesis is a good approximation for asymmetric waveforms.

Test results for waveforms with a zero-voltage time t0 between pulses are shown in
Figures 9 and 10. In each test, the positive and negative voltage pulses have constant
amplitude and duration (as listed in the figure legend), but the zero-voltage time be-
tween pulses, t0, is varied. In Figures 9a and 10a, the waveform is always symmetric
and the overall period is expanded as t0 is increased (marked “Symmetric, D < 1”
in Figure 1b). In Figures 9b and 10b, the period remains constant but the waveform
is skewed with one of the two zero-voltage periods shrinking as the other expands
(marked “Shifted, D < 1” in Figure 1b).

Based on the composite waveform hypothesis (see Section 3), we would expect
Figures 9a and 10a to show constant energy loss per cycle as the zero-voltage time, and
thus the period, increases, with no loss occurring during the zero-voltage time. The data
in Figure 9a, for the ferrite core, show significant variations as t0 increases, as much as
about 40%, in some cases increasing and in others decreasing. The data in Figure 10a,
for the powdered-iron core, show much less variation, matching the expectation from
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Figure 9: Experimental data testing the extension of ferrite-core square-wave data to
waveforms incorporating zero-voltage time t0. This is done by varying the period and
extending off-time t0, or by shrinking one zero-voltage time while expanding the other
to maintain a constant period. The legend gives the on-time t1 and the per-turn pulse
voltage for each curve.
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Figure 10: Experimental data testing the extension of powdered-iron-core square-wave
data to waveforms incorporating zero-voltage time t0. This is done by varying the pe-
riod and extending on-time t1, or by shrinking one zero-voltage time while expanding
the other to maintain a constant period.



rev 9a 15

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−25

−20

−15

−10

−5

0

5

10

15

20

25

t
1
 = 3.9811 µs;  2.5118 V

 

 
0.09995 µs

0.15845 µs

0.25115 µs

0.3981 µs

0.63095 µs

0.99995 µs

1.5849 µs

2.5119 µs

3.9809 µs

6.3094 µs

9.9999 µs

15.8489 µs

25.1189 µs

Figure 11: Hysteresis loops for one data set in Figure 9a: the top curve for t1 = 3.98 µs.
The legend shows t0 for each loop, corresponding to one data point on the top curve in
Figure 9a.

the composite waveform hypothesis very closely, with only slight increases in loss for
long off-times, which may be a result of measurement artifacts.

The results for the shifted pulse waveforms, in Figures 9b and 10b, show little
variation in loss as the pulse position is shifted (increasing one off-time while decreas-
ing another), as would be expected from the composite waveform hypothesis, but the
ferrite-core loss is slightly different from that predicted from the square-wave charac-
terization data using (2), whereas the powdered-iron core matches the predicted loss
more closely. This is consistent with the results shown in Figures 9a and 10a. For the
ferrite core, the relatively low variation in loss as the pulse position shifts, compared
to that shown in Figures 9a and 10a, could be explained by the effects of one off-time
increasing offsetting the effect of the other decreasing for a net zero effect on loss. Al-
ternatively, if the trends shown in Figures 9a and 10a are due to measurement artifacts
associated with the expanding period, this could also explain the relatively flat behavior
seen in Figures 9b and 10b, because the shifted pulse experiments are immune to any
errors associated with waveform period. However, the difference in behavior between
the two cores seen in Figure 9a and 10a indicates that the trends seen in the data are in
fact due to the true behavior of the cores, not to any unexpected measurement artifacts.
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Figure 12: Hysteresis loops for one data set in Figure 9a: the second curve from the
top, for t1 = 6.31 µs. The legend shows t0 for each loop, corresponding to one data
point on the second curve in Figure 9a.

6 Hysteresis Loops

To further explore the phenomena causing variations in loss when the zero-voltage time
between pulses, t0, is varied, hysteresis loops for each point in several of the curves in
Figure 9a are plotted in Figures 11, 12, and 13.

The scale and number of curves on these figures, together with ringing on the wave-
forms, makes it difficult to see a dramatic trend, particularly on the relatively narrow
loops of Figure 12 and Figure 13. However, a zoomed in view of Figure 11, shown in
Figure 14, provides some insight. We see that the rise to the point of maximum current
and flux linkage is nearly identical on each curve, with the exception of ringing that
has little effect on the area of the loop. However, the decreases diverge: those with the
shortest zero-voltage time t0 fall more directly, while those with longer zero-voltage
time curve further to the left. This part of the curve immediately follows the pause
at zero voltage (which is at the top right of the plot), and thus it makes sense that its
shape is the most affected by the pause. An oversimplified description would be that
the flux gets “stuck” near the the maximum value if it has had time to “soak” and get
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Figure 13: Hysteresis loops for one data set in Figure 9a: the fourth curve from the top,
for t1 = 10 µs. The legend shows t0 for each loop, corresponding to one data point on
the fourth curve in Figure 9a.

accustomed to that flux value, whereas the flux can more easily transition away from
the maximum if the excitation is decreased immediately.

7 Design Techniques
The loss data derived from square-wave measurements can be provided to a magnetics
designer in various forms, including tabulated data or curve-fit functions for use in
software, and various types of graphical presentation. The loss data can be presented
as loss per unit volume, or as total loss for a specific core, to simplify calculations
for the designer. Here we discuss working from graphical data in the “Herbert curve”
format of Figure 6b. These curves are parameterized by voltage per turn applied to a
winding. It’s also possible to provide curves like this for a specific component with a
given number of turns, parameterized by voltage.

In general, for waveforms as shown in Figure 1a, based on (2), one can calculate
loss from a Herbert plot as

P =
1
T

(Psqr(V1/N, t1) · t1 + Psqr(V2/N, t2) · t2) (3)

In the case of symmetric waveforms, Psqr(V1/N, t1) = Psqr(V2/N, t2), and the loss
calculation reduces to

P =
2t1
T

Psqr(V1/N, t1). (4)
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Figure 14: A zoomed-in view of the hysteresis loops in Figure 11. The legend shows
t0 for each loop, corresponding to one data point on the top curve in Figure 9a.

Consider, for example, a component operating at 50 kHz with a symmetric wave-
form with a duty cycle of 63%, 12 turns, and a pulse amplitude of 4.8 V. The period is
20 µs, and the positive and negative pulse widths are t1 = t2 = 0.63 · 10 µs = 6.3 µs.
To find the correct curve to examine in Figure 6b, we find the voltage per turn which
is 4.8/12 = 0.4 V. As shown in Figure 15, we can read off the power loss for this pulse
width and voltage per turn as Psqr = 7.9 mW. According to (4) we scale this result by
the ratio 2t1/T = 12.6 µs/20 µs, to get a predicted power loss of 7.9 · 0.63 = 5 mW.

An interesting design space to explore is to maintain constant frequency and aver-
age voltage, but to vary the pulse width and period. The relevant data is along a curve
of constant volt-seconds on the Herbert plot—the dashed line in Figure 16. To get
power loss from these points, assuming constant frequency of 50 kHz, we then scale
these points down by the ratio 2 · t1/20 µs to get the solid line in Figure 16. This rise
of this curve to the left illustrated the disadvantage of using shorter duty cycles for a
given average voltage or volt-second requirement.

As an asymmetric example, consider the same 12-turn winding, with a 12 V, 10 µs
pulse applied in one direction, and a 30 V, 4 µs pulse applied in the other direction,
with a 20 µs overall period (50 kHz) as before (the waveform includes a total of 6 µs
of zero-voltage time). Psqr(V1/N, t1) and Psqr(V2/N, t2) are read off Figure 15 as
244 mW and 818 mW. The overall power loss can then be found from (3) as

P = 50 kHz (244 mW · 10 µs + 818 mW · 4 µs) = 286 mW. (5)
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8 Discussion
The results in Figures 8 and 8b show that the composite waveform hypothesis holds
well for asymmetric waveforms, and the method provides excellent accuracy. Figure 10
shows that, for the powdered-iron core tested, it also holds very well for waveforms
with zero-voltage periods, although zero voltage times can cause significant deviation
in the ferrite core tested. This variation is not predicted by the composite-waveform
hypothesis; nor is it predicted by any of the methods discussed in Section 2. Additional
work to better characterize and model this behavior could lead to more accurate loss
predictions. However, even with this error, the approach described here is expected to
be more accurate than other methods which are subject to the same error, and addition-
ally entail error due to using sinusoidal data to predict square-wave loss.

In addition to being more accurate than other methods, the new approach is also
easier to use than methods like the iGSE. Thus, we believe that it would be beneficial
for core manufacturers to characterize square-wave loss and provide that data graphi-
cally, electronically or both, either on a per-unit-volume basis or on a per-core basis.

As presented here, the method is only applicable to waveforms with one positive
voltage pulse and one negative pulse. However, it could also be easily applied to wave-
forms with minor loops by separating the minor loops following the approach in [7], as
long as each constituent loop comprises only one positive pulse and one negative pulse.
Adapting the method to waveforms with a series of voltage pulses of the same polar-
ity but differing amplitudes is less straightforward. The corresponding analysis in the
iGSE (eq. (13) in [7]) includes a factor that depends on the total flux excursion as well
as the flux change for a given pulse, and it may be necessary to introduce similar factors
to accurately model losses in such cases using square-wave loss data. However, most
power electronics applications use waveforms with only one positive voltage pulse and
one negative pulse, such that that the analysis here applies directly.
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9 Using the Data
The data generated by this works includes characterization data for two cores and ver-
ification data for the same two cores. Complete data for both is archived at the web
site http://engineering.dartmouth.edu/inductor/coredata in files
ferrite-data.zip and powdered iron-data.zip. However, a user calcu-
lating loss for a particular waveform does not need these large (> 20MB) files, but
rather needs only the characterization data. This data is available in a smaller data col-
lection, characterization-data.zip, on the same page. This archive contains
the data plotted in Figures 6 and 7 in multiple formats, as well as the plots themselves
as Portable Network Graphics (PNG) images. The data include, for each square wave
tested,

• Frequency (Hz).

• Peak flux linkage (Vs).

• Volts/turn.

• Average loss (W).

• Loss per cycle (J).

The formats are:

• Microsoft Excel (.xls) format, with columns corresponding to each of the data
listed above, and headings labeling each.

• Comma-separated value (.csv) format, with columns corresponding to each of
the data listed above, and no text.

• Plain text (.dat) file, with columns corresponding to each of the data listed
above, and a header row briefly identifying each column.

• Matlab .mat format, which, when loaded into the Matlab environment, provides
the variables f, dphi, Vturn, Pavg, and Ecycle, corresponding to the data
listed above.

These formats are explained in greater detail in the appendix.
Many users may wish to simply read values off of the graphs in Figures 6 and 7 but

these files make the data available in multiple formats for use by computer software, or
for analyzing, curve-fitting, or plotting the data.

10 Conclusion
The proposed measurement and loss calculation approach allows generalizing square-
wave core-loss data to predict core loss with any common rectangular voltage wave-
form. An automated measurement system has been used to collect the required square-
wave core characterization data for ferrite and powdered-iron cores, and to collect addi-
tional data to assess the accuracy of the method for other voltage waveforms. Measure-
ments show good correlation, but also exhibit behavior not yet explained by published
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models, which may lead to new insights and more accurate models. Despite the minor
discrepancies, the loss prediction method yields higher accuracy, and is easier to use,
than other methods for non-sinusoidal waveforms.



24

A Data Files and Fields
This appendix summarizes the various field names in the data files, along with their
meanings. Table 3 gives a summary of all the files. In these files, we use designations
to identify the four waveform types shown in Figure 1b. They are listed in Table 4.

A.1 Oscilloscope Data
The first two lines of the oscilloscope CSV files are heading. The first is the field
identifier, the second, the units of measure. All the data are floating point numbers.
The SYNC and OUT fields are the input to the waveform decoder and are only used for
debugging.

x-axis Time, in seconds.

SYNC The sync signal from the arbitrary waveform generator (volts).

OUT The output signal from the arbitrary waveform generator (volts).

V The sense winding voltage, Vs, (volts).

Field Description
set-gen.dat The Gen-runs input data file, instructions for making a set of

runs.
set-runs.dat The output from Gen-runs and the input to the Coreloss pro-

gram.
set-gen.log A log file from Gen-runs echoing the parameters and telling

which runs were skipped and why.
set-log.dat A diagnostic file created by the Coreloss program.
set-log.csv A diagnostic file created by the Coreloss program. It has the

same informations as the .dat file, above, but in the CSV for-
mat.

set-run.csv The output from the oscilloscope for a single run.
set-run.txt A configuration log from the oscilloscope for a single run.
set-run.png An image of a plot of the oscilloscope data for a single run,

along with a plot of power and energy versus time.
output.dat Contains the per-cycle loss data, as well as the original data.
output.csv Contains the per-cycle loss data, as well as the original data. It

has the same informations as the .dat file, above, but in the
CSV format.

data.mat Contains the per-cycle loss data, as well as the original data.
It has the same informations as the .dat file, above, but as
Matlab source code.

Table 3: File naming conventions for parameter and data files.
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Designation D t1 = t2 Symmetric Comment
square = 1 yes yes
skew < 1 yes no “shifted”
expand < 1 yes yes varying T
assym = 1 no no

Table 4: Waveform type designations

I The current (amperes).

A.2 Test Input Data
The test input file read by the Coreloss program. Each record is a white-space-delimited
list of the parameters for one run. An experimental run has these parameters:

runId The run identifier. This should chosen to be be globally unique. The Gen-runs
program uses the set ID, followed by a zero-padded integer, the run ID.

sample The core sample identifier.

N The number of turns on the core.

period The period, T , of the drive voltage, in seconds. (Floating point.)

t1 The pulse width of the first pulse. (Floating point.)

pinch The pinch, P , it the time between pulse 1 and pulse 2, t0, expressed as a fraction
of the off time for a symmetric waveform:

P = 1− 2t0
T − t1 − t2

0 ≤ P ≤ 1 for D < 1. P = 1 for expand waveforms, and is undefined for
D = 1 (indicated in the file by -1). (Floating point.)

D=1 A Boolean value, true (1) if D = 1 and 0 otherwise. This may seem redundant,
but it is needed for clarity and safety because of the floating point time parame-
ters.1

Vps It is the voltage requested from the power supply.

delay A delay between runs to allow for cooling. (Seconds.)

VRange Full scale voltage range setting for the oscilloscope.

IRange Full scale current range setting for the oscilloscope.

The following fields are used by the data reduction programs to group data by families:

1The name D=1 was chosen for brevity and clarity. I hope the embedded math symbol is not confusing.
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TSet Zero if it is not a square wave. Otherwise, records with the same value have
the same period.

VSet Zero if it is not a square wave. Otherwise, records with the same value have
the same Vps.

expandSet Zero if it is not an expand waveform. Otherwise, records with the same
value have the same pulse shape. (Varying t0.)

skewSet Zero if it is not a skew waveform. Otherwise, records with the same value
have the same pulse shape. (Varying P .)

assymSet Zero if it is not a assym waveform. Otherwise, records with the same value
have the same pulse shape for the t1 pulse.

A.3 Run Data Generator
The input file for Gen-runs is a white-space-delimited dictionary. The fields are:

comment This is a one-line comment that is printed at the top of the run data file.

setId The set ID is used to name the run data file and is prepended to each run ID.
By convention, this is the same as the set identifier used in the source data file
names.

sample The identifier for the core sample.

N The number of turns.

types A list of run types to be generated. They can be any of {square, expand,
skew, assym}.

t1min Minimum pulse width for square wave runs.

t1max Maximum pulse width for square wave runs.

VpsMin Minimum power supply voltage.

VpsMax Maximum power supply voltage.

grid Spacing of the geometric series, in decilog. For five values per decade, use 2.

satLimit Saturation limit in power supply volt-seconds per turn.

delay The delay time for cooling between runs, in seconds.

expandSamples A white-space-delimited, paired list of Vps/N and t1 for the pulses
used in expand and skew runs. These values will be “rounded” to the decilog
preferred values (Section 4.2).

t0min The minimum off-time between pulses, t0, to be used for expand and skew
runs.
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t0max For expand and skew runs, the maximum off-time. expand waveforms
are symmetric, with the period T = 2(t1 + t0). The off time, t0, increases
geometrically, stopping when it exceeds t0max.

TFactor For skew runs, the ratio of the period, T , to the pulse width, used to deter-
mine T , i.e., the period is TFactor * t1. The series starts with t0 = t0 min,
and increases t0 geometrically until the pulses are approximately symmetric.

# For comments; both the key (#) and the value are ignored by the program.

B General File Formats
There a few general types of file format used in the project:

Comma separated value (CSV). This is a standard tabular format, where columns
are separated by commas. Files have the .csv extension. It was chosen be-
cause it was the only ASCII text output file format available from the Tektronix
oscilloscope. The first line or two of all the CSV files is a header.

Key-value dictionary. This is a particularly nice, human and machine readable format
for configuration files. Each line has zero or more white-space-delimited key-
value pairs. The key is a unique parameter name; the value is the value it is
assigned. The layout and order of the pairs is unimportant. If a value is enclosed
in quotation marks or braces, it may be empty or contain embedded white space.

Log. Log files are text files and usually have the extension .log. They give diagnostic
information and are intended for human readers, and are generally not easily
parsed by a computer.

White space delimited table. These are ASCII text table files that separate columns
with white space—spans of one or more space or tab characters. They are easily
read by a human if printed with a monospaced font, like Courier. Cells that are
empty, or contain white space, must be enclosed in quotation marks or braces.
Blank lines and lines beginning with # are ignored. The latter are often used for
headings.

Portable network graphic (PNG). These are raster graphics files, used for the data
plots.

Matlab MathWorks MATLAB source code file, which have the extension .mat.
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Introduction: 

Everyone "knows" that core losses 
depend only upon B

)
and frequency.  It 

does not matter what the excitation level 
and duty-cycle is, only the maximum 
flux density B

)
.  That is true, if the 

switching frequency is below 10 kHz or 
so.  At the frequencies used in today's 
pulse-width-modulated (pwm) 
transformers, the core losses increase 
dramatically for low duty-cycles, as 
much as 10 times at 10 % duty-cycle. 

Graphs of magnetic core loss data are 
usually for sine-wave excitation and 
presented in terms of maximum flux 
density B

)
and frequency f.  These graphs 

are of questionable value for pulse-
width-modulated (pwm) power 
converter design and decidedly not user-
friendly.  Graphs of core loss data for 
square-wave excitation, presented in 
terms of applied voltage and time are 
much more relevant to pwm power 
converter design and are much easier to 
use. 

Background: 

Magnetic core loss graphs from 
manufacturers are marginally useful for 
pwm power converter design.  (1) They 
usually present loss in terms of 
maximum flux density B

)
, an unfamiliar 

parameter of little use to the power 
converter designer.  (2) The magnetic 
units used for core loss graphs are 
confusing and inconsistent.  The 
likelihood of making errors is 
significant.  (3) The graphs are for sine-
wave excitation.  Most pwm converters 

operate with square-waves having a 
variable duty-cycle. (4)  The graphs are 
notoriously inaccurate.  It is not unusual 
to see ruler-straight lines on core loss 
curves, with gross inaccuracies at the 
extremes. 

Some very interesting work has been 
done exploring losses at increased 
"effective frequency." [1], [2] and [3]. 

Using volt-second graphs 

Figure 1 shows representative core loss 
curves for square-wave excitation, 
presented as a family of constant voltage 
curves vs. pulse-width t. 

 
Figure 1:  Representative core loss curves for 
constant voltage square-wave excitation vs. 
pulse-width. 

User-friendly Data for Magnetic Core Loss Calculations 
 Edward Herbert, Canton, CT.  November 10, 2008 
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For a graph for a magnetic material, 
material, the voltage is normalized and 
has units of volts per area-turn and the 
loss is in watts per volume.  Core loss 
graphs for specific cores can include the 
geometric parameters, so the units are 
volts/turn and watts. 

Low duty-cycle data 

 

Figure 2.  Curves of constant average voltage 
can be plotted.  Note the extreme change in slope 
for short pulse widths (high frequency). 

In figure 2, curves of constant average 
voltage equal to 0.5 V were plotted for 
several frequencies.  As an example, 
using the technique for low duty-cycles 
presented below, start with the 0.5 V line 
and 0.01 ms, point A.  That is the loss 
for a square wave with 0.01 ms pulse 
width.  At 0.001 ms, to have the same 
average voltage, the voltage during the 
pulse is 5.0 V, point B, reduced by the 
duty-cycle 0.1, point C.  The line A-C is 
approximately the line showing the loss 
for constant average voltage.  This may 
be the most useful curve of all for a 
power converter designer. 

The same technique is repeated to 
estimate the losses at constant average 
voltage for other starting pulse-widths 
(frequencies), resulting in a family of 
curves, shown in figure 2. 

Note that at short pulse-widths (high 
frequency), the losses rise significantly 
at low duty-cycle.  At longer pulse-
widths, (low frequency), the duty-cycle 
does not much affect losses.  This latter 
case is the classic loss characteristic 
taught for magnetic design. 

The reader is advised that these curves 
were derived using Steinmetz equations 
applied far beyond their limits of 
reasonable accuracy, using many 
complex manipulations, each an 
opportunity for error.  Accordingly, the 
graphs are qualitative at best. 

However, the graphs represent a 
suggested form to use for plotting "real" 
data, from laboratory test and 
measurement.  Real data from real tests 
will always trump manipulated data and 
approximations. 

This presentation of the data is user-
friendly and much more meaningful for 
power converter design. 

 
Figure 3:  Times and duty-cycles defined. 
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Calculations 

See figure 3 to define pulse-width and 
duty-cycle:  In all cases, the pulses are 
repetitive steady-state pulses, as would 
be generated in a pwm converter at 
stead-state conditions. 

For a square-wave excitation, t is the 
pulse-width and T is the period.  The 
duty-cycle D is 1.0.  To calculate the 
core losses using figure 1 for a 1 volt 
square-wave with a pulse-width of 2 us, 
follow the dashed line up from 2 us to 
intercept the 1 volt curve, then 
horizontally to intercept the vertical axis.  
The result is about 1.8 mw/cm3. 

For a symmetrical pulsed excitation, t 
is the pulse-width and T is the period.  
The duty-cycle D is 2 * t / T.  To 
calculate the core loss for a 1 volt pwm 
wave-form having a 1 volt excitation and 
a 2 us pulse-width and a duty-cycle of 
0.5, follow the dashed line up from 2 us 
to intercept the 1 volt curve, then 
horizontally to intercept the vertical axis.  
The result is multiplied by the duty-cycle 
0.5 to give about 0.9 mw/cm3. 

For an asymmetrical pulsed 
excitation, the volt-seconds none-the-
less must be equal for the pulses.  T is 
the period, t1 is the positive pulse-width, 
t2 is the negative pulse-width.  Two 
duty-cycles are defined, D1 = t1 / T and 
D2 = t2 / T. 

To calculate the core loss for an 
asymmetrical pwm having a period of 8 
us, and having a 2 us positive pulse of 1 
volt and a 4 us negative pulse of 0.5 volt, 
first follow the dashed line up from 2 us 
to intercept the 1 volt curve, then 
horizontally to intercept the vertical axis.  
The result is multiplied by the duty-cycle 
of 0.25 to give about 0.45 mw/cm3. 

Next, follow the dashed line up from 4 
us to intercept the 0.5 volt curve, then 
horizontally to intercept the vertical axis.  
The result is multiplied by the duty-cycle 
of 0.5 to give about 0.24 mw/cm3.  Add 
the partial results.  The core loss is about 
0.69 mw/cm3. 

Thus a method of calculating core loss is 
presented that does not require 
calculating magnetic parameters.  This 
data and the calculations are much more 
relevant to power converter design, and 
much more user-friendly. 

Saturation 

Following the constant voltage curves 
from left to right, the volt-seconds of 
each point is the product of the voltage 
and the pulse-width.  The curve ends at 
the volts-seconds where the core 
saturates.  Accordingly, as long as the 
voltage and pulse-widths of interest are 
on the curve, the core will not saturate 
(if there is no flux walking.) 

Loss data for cores and 
wound components 

 

Figure 4.  For a specific core, the geometric 
parameters can be included, so the result is read 
directly as watts W. 

Losses for cores:  A manufacturer of 
magnetic cores can present data for any 
specific core with all of the geometric 
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parameters included, so the user need 
not be concerned with effective area, 
effective volume and the like.  Knowing 
the volts/turn and the pulse-widths of 
interest, the losses in the core can be 
read directly from the graph, as seen in 
Figure 4. 

Losses for wound components:  A 
similar graphical presentation includes 
the turns, allowing a designer to 
determine the core losses directly using 
only the voltage and pulse-widths. 

"Remagnetization velocity" 

Many papers have suggested that dB/dt 
and B are more relevant to core loss, 
leading to improved methods of 
calculation that have a better match to 
test data.  None, as far as we know, has 
recognized dB/dt as voltage (with a scale 
factor).  Yet, for most power converter 
designers, voltage is a much easier 
parameter to use and understand. 

All continue to use maximum flux 
density B

)
 and frequency f.  [1] uses the 

term "remagnetization velocity" for 
dB/dt.  In [2] and [3], the more 
straightforward "dB/dt" is used. 

For any expression using the flux density 
B or the maximum flux density B

)
, an 

equivalent expression can be written 
substituting volt-seconds, with an 
appropriate scale factor. 

"Effective frequency" 

[1], [2] and [3] all use the concept of 
"effective frequency" to account for non-
sinusoidal wave-forms.  Intuitively, there 
is a relationship between "duty-cycle" 
and "effective frequency," duty-cycle 
being analogous to the ratio of the real 
frequency to the effective frequency. 

For any expression using frequency, an 
equivalent expression can substitute the 
inverse of the period, noting that 
frequency f equals 1 / T, where T is the 
period.  We prefer using the half-cycle 
period t, so f equals 1 / 2 t. 

Steinmetz equation using 
voltage v and the period T 

The Steinmetz equation (or any other 
expression using B

)
 and f) can be 

expressed in terms of voltage and time. 

βα BfCP mv

)
**=  

Substituting f = 1 / T  
and B

)
 = k * v * T  gives 

)(**

)**(*1*

αββ

β
α

−′=

⎟
⎠
⎞

⎜
⎝
⎛=

TvCP

Tvk
T

CP

mv

mv  

[T is the period, k is the scale factor 
converting volt-seconds to B

)
,  v is the 

voltage density and C'm = Cm * kβ.] 

This exercise is to demonstrate the 
equivalence of the expressions, not to 
suggest converting present data to the 
new format, particularly as we prefer 
using square-wave excitation.  New data 
should be taken using voltage and pulse-
width.  

Graphs using converted data 

To illustrate the point, we converted data 
mathematically to make the graphs that 
follow. 

The starting point is the data as they are 
usually presented for Magnetics, Inc. F 
material.  These data were chosen 
because Magnetics, Inc. also provides a 
family of Steinmetz constants for the F 
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material, as shown in the box below [6].  
The frequency ranges are colored and 
correspond with the colors of the curves 
in the graphs. 

Figure 5 shows a composite graph, 
taking the data for the F material from a 
data sheet (the solid lines) and 
superimposing on it the curves resulting 
from the Steinmetz calculations (the 
dashed lines). 

 

Figure 5:  Core loss data for Magnetics, Inc. 
material F.  The solid lines are from the 
datasheet, and the dashed lines are calculated 
using the Steinmetz equations. 

Magnetics, Inc.'s loss expression 
approximation is: 

dc
L BfaP ˆ**=  mW/cm3 

[Where a, c and d are constants, f is in 
kHz and B̂  is in kG.] 

For each line in figure 3, the slope of the 
line is the exponent d, and the spacing 
between the lines is governed by the 
exponent c. 

Core loss vs. frequency. 

 
Figure 6:  The data for Magnetics Inc. material 
F was re-plotted as a family of curves of constant 
flux density vs. frequency. 

For Magnetics Inc.'s F material, the Steinmetz constants are given as follows. 

Range a c d 

f ≤ 10 kHz 0.790 1.06 2.85 
10 kHz ≤ f < 100 kHz 0.0717 1.72 2.66 
100 kHz ≤ f < 500 kHz 0.0573 1.66 2.68 
f ≥500 kHz 0.0126 1.88 2.29 

The colors correspond to frequency ranges in the graphs. 
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First, the data was re-plotted using 
curves of constant B̂  vs. f as in figure 6.  
Note the extreme discontinuities in the 
calculated data (dashed lines).  These 
lines should be continuous, pointing out 
dramatically how poor the Steinmetz 
approximation is at the extremes of the 
frequency ranges.  The solid lines are 
drawn free-hand in an attempt to find the 
best fit through the calculated data. 

Excitation voltage vs. 
frequency 

 
Figure 7:  The data are re-plotted as a family of 
curves of constant excitation vs. frequency. 

Next, the data is plotted in terms of 
voltage and frequency  This required 
substituting volt-seconds (with a scale 
factor) for B̂ , but then substituting back 
the frequency f term as the inverse of the 
seconds.  The result is a family of loss 
curves of the excitation voltage (in 
volts/turn-cm2) vs. frequency, as shown 
figure 7. 

Again, the dashed lines are the 
calculated curves, and the solid lines are 
a "best fit" drawn free-hand.  On the 
upper left, the lines were ended at a flux 
density of 3 kG.  This would be a 
straight line if the equations were ideal. 

Voltage vs. pulse-width 

The final translation is to re-plot the 
curves in terms of pulse-width rather 
than frequency.  Because the pulse-width 
t is used instead of the period T, the scale 
was shifted left by 2.  Only the "best fit" 
curves were used.  The graph in figure 8 
was rescaled to square up the log-log 
coordinates, and possible asymptotes of 
the curves were added.  With further 
editing for appearance, this graph 
became the graph of figure 1. 

 
Figure 8:  The curves of figure 7 were flipped 
left to right to invert the frequency scale to a 
time scale, and it was shifted left by 2 so that the 
scale is pulse-width t rather than the period T. 

While this graph was derived from data 
for the Magnetics, Inc. F material, the 
reader is reminded that curves are based 
upon the Steinmetz equations applied far 
beyond their range of reasonable 
accuracy.  The complexity of the 
calculations makes the chance of error 
quite significant.  As such, only 
qualitative relationships can be inferred. 

However, new data taken using square-
wave constant voltage excitation and 
presented as a function of the pulse-
width (half period) of the square-wave 
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will be no less accurate and valid than 
the data presently used, while being 
much more relevant to power converter 
design and much more "user-friendly." 

Stienmetz-like equations 

Rather than try to shoe-horn the 
Steinmetz factors into a new form, it is 
suggested that a new Steinmetz-like 
equation be defined. 

εδ tvCP xv **=  

Find the area on the graph over which 
the circuit of interest will operate, and 
pick three points that bracket that area.  
For each, write the Steinmetz-like 
equation, with the constants as 
unknowns, and solve the equations 
simultaneously.  Since solving 
simultaneous equations in which two of 
the unknowns are exponents is daunting, 
it is suggested to use a math program 
such as MathCad. 

Oliver-like equations and 
Ridley-Nace-like equations 

In [4], Christopher Oliver presents a 
curve fitting algorithm that is accurate 
over a much broader area of the graph.  
In [5], Dr. Ray Ridley and Art Nace do 
the same (but with a much different 
algorithm), and introduce temperature 
compensation as well.  We see no reason 
why similar techniques could not be 
applied to voltage and pulse-width 
graphs as well, as the underlying physics 
is the same. 

Conclusion 

Core loss data can be taken for square-
wave excitation, and presented in terms 

of the excitation voltage and pulse-width 
with no loss in accuracy. 

Core loss data can also be taken and 
presented as curves of constant average 
voltage vs. pulse width, to show the 
consequence of low duty-cycle 
operation. 

The resulting data are much more 
relevant to pwm power converter design, 
and are much more "user-friendly". 
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