Validation of cmc with **BsT-pulse**

JC Sun
Bs&T Frankfurt am Main GmbH
psma magnetics workshop
June 2021 in Phoenix
JC and his...

- physicist & engineer
- make and design ferrite 3Cx and 3Fx
- sales amorphous metals 2605/2714/2705
- marketing nanocrystalline 500F components
- Bs & T Frankfurt am Main GmbH
• emi choke (common & differential mode)
• Validation of choke is problem
• BsT-Pulse damping oscillation delivers the choke feature
• Example (nanocrystalline common mode choke)
• Conclusion
• Annex (alloyed cored differential mode choke)
Sinus Magnetization AC
- **High excitation**
- **Low excitation**
- **IEC 62044-3**
- **IEC 62044-2**
- **Loss, μ_a** driven by B mode
- **B_{peak}, loop driven by H mode**
- **DC superposition**

Pulse Magnetization
- **Fast transit of magnetic state**
- **dB/dt**
- **IEC 60367-1 Annex G (393 IEEE)**

BsT-Pro
- **Loss map** (f, B, T, H_{DC})
- **μ_{rev}** (f, B, T, H_{DC})
- Major, and biased minor loop

BsT-Pulse
- **Differential and amplitude L**
- **Energetic L, power loss i.e. Q factor**
Pulse Magnetization

fast transit of magnetic state

dB/dt

Square Wave

bipolar pulse magnetization

BdT-Pulse

differential and amplitude L

energetic L, power loss

Bs&T-Pulse
Filter – choke – common/differential mode – magnetics

Common Mode (asymmetric)
- strong "common-mode" attenuation
- μ and B_s must be safe against unbalanced currents!

Differential Mode (symmetric)
- slight "differential mode" attenuation

Typical values:
- $C_x = 0.1 \ldots 1 \mu F$, $C_y = 1 \ldots 10 nF$
- $L_1 = 3 \ldots 50 mH$, $L_{stray} = 5 \ldots 50 \mu H$
- $Z_1 \neq Z_2 \approx 50 \Omega$ or $\neq 50 \Omega$
Model of choke

Insertion loss a_E

$|Z| = \sqrt{(\text{Re}(Z))^2 + (\text{Im}(Z))^2} \approx \sqrt{R_{s,\text{core}}^2 + (\omega L_{\text{core}})^2}$

$\mu'' f\mu' f$
Requirement of a 3+1Ø common mode choke $35A_{rms}$

- **Core:**
 High (*tunable*) permeability

- **Wire:**
 High rated current (>25A) of interest

- **Choke performance:**
 High frequency performance defined by mechanical terminals for fixed parasitic performance

- **Safety:**
 No isolation problem with safety margin in creepage distance
Validation of CMC is a challenge

• Material based core specification like μ_3 of nanocrystalline tape wound core does **not** reflect application feature: A_L as singulary nominal value has large tolerance like -30~+50%

• **cmc:** inductance (core&leakage μ), enough flux linkage (B) and insertion loss (a_E)

All cmc specs. needs is a energetic impulse short with **Bst-pulse**
Physic principle & device damped oscillation
Voltage and current decay ($L_{\text{core}&\text{leak}}$)
B_s and insertion loss and more

- Flux linkage (~B_s) regardless the *effective* core geometry specification
- Insertion loss a_E* can be calculated with damping coefficient
- It may detect the isolation failure, safety margin

*Further reading: JC Sun BodoPower 10/2020
Damp-Oscillation Solution for Validation of the Nanocrystalline Core for Common Mode Choke
conclusion

• Damped oscillation principle* enables characterization and validation of common mode choke, fast easy and accurate, compliant ieee 389 mod. ✓ ✓ ✓

Core and leakage inductance ✓
flux linkage of absorption capability of noise energy and insertion loss ✓
wire isolation w/o corona effect ✓

• Same effective to differential mode choke see annex

*future reading: JC Sun IEEE power Magazine 060/2021
Recent Development in Measuring Technology of soft magnetic components for High Power Applications
Annex with an example for Different mode choke

• dmc: cored with material & shape HS1016 (CSC) 2x wound with edge wire with N=53
• Voltage load: 400V
• Capacitor: 430 µF
• Device: BsT-Pulse 1k3k Typ SN0001b
Voltage and current decay

PSMA workshop magnetics Damp-Oscillation BsT-pulse
Curve & Loop via parameter fitting [Rivas]

further reading: JC Sun BodoPower 09/2020
Damp-Oscillation Solution for Validation of the Metal Alloyed Powder Core