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Outline

• Background on electromagnetic compatibility (EMC)
• Conducted emissions testing
• Common-mode (and differential-mode) modeling tutorial
• Application and validation in UA EMI testbed
• Study of leakage current through multi-chip power module (MCPM) 

baseplate
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The paradigm shift in power systems due to power 
electronics makes EMC critical to design.

Ideal, 3-phase 60-Hz voltage supply Two-level, VSI phase-to-neutral output
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Present trends in power electronics likely to 
worsen EMI.

• Maturation of wide-bandgap 
devices

• Drive for increased efficiency 
and/or power density

• Increased penetration of 
renewables and power 
electronics applications

• Results: higher edge rates (dv/dt), 
switching frequencies, and voltage 
levels
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What is electromagnetic compatibility?

• Concerned with the generation, transmission, and reception of 
electromagnetic energy

• A system is electromagnetically compatible if
1. It does not cause interference in surrounding systems;
2. It does not allow interference from surrounding systems;
3. It does not cause interference with itself
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Path Receptor
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Some basic EMC terminology

• Emissions, interference, and susceptibility
• Conducted emissions vs. radiated emissions
• Differential-mode vs. common-mode

• Electrical length: 
– f = 300 kHz, λ = 1 km
– f = 3 MHz, λ = 100 m
– f = 30 MHz, λ = 10 m
– f = 300 MHz, λ = 1 m

• Antennae are poor radiators of signals for which 
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Spectra of Modern Power Electronics
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• Traditional IGBT-based systems: 
• Operation Frequencies to ~50 kHz
• Easily-suppressed extended dynamics
• Packaging impedances are not critically 

important

• WBG-based systems: 
• Operation Frequencies to a few MHz
• Extended dynamics to ~50 MHz
• Packaging impedances are critically 

important in “Near-RF” domain

A. N. Lemmon, R. Cuzner, J. Gafford, R. Hosseini, A. D. Brovont, and M. S. Mazzola, “Methodology for Characterization of Common-Mode Conducted Electromagnetic Emissions in Wide-Bandgap Converters for 
Ungrounded Shipboard Applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 1, pp. 300–314, Mar. 2018.

Distribution A. Approved for public release, distribution is unlimited. Approved, DCN# 43-5296-19



Approach to EMI challenges in PE systems

• PE emissions primarily in conducted band (~10 kHz–30 MHz)
• Objective is to prevent emissions from reaching grid (large antenna)
• Three options: reduce susceptibility, make transmission inefficient, or eliminate 

source
• Our Approach: Employ modeling to minimize conducted emissions

– Conducted emissions simpler and possible early in design
– Reduces potential for radiated EMI
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Conducted EMI predictable Radiated EMI predictable

Early-stage design Late-stage design

Architecture System 
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Component 
topologies
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System layout
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How do you measure conducted emissions?
• Line Impedance Stabilization 

Network‡:
– Provide a standard source impedance for 

evaluating/measuring EUT emissions
– Decouple source and EUT emissions
– Typically modeled as 50 Ω to ground

• LISN only used on input side of EUT
• Commercial LISNs are not available for 

voltage levels > 1 kV
• Custom LISNs designed and built at 

UA

Fischer FCC-LISN-50-XXX LISN

‡ “DOD Interface Standard, Requirements for the control of electromagnetic interference characteristics of subsystems and equipment, Mil-Std-461G, 10 Mar. 2015.
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Example: emissions from a machine-drive
LISNs
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– Differential mode (DM):

– Common mode (CM):

A. D. Brovont and A. N. Lemmon, “Utilization of Power Module Baseplate Capacitance for Common-Mode EMI Filter Reduction,” IEEE Electr. Ship Technol. Symp., 2019, submitted. 
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Fields from CM current are more likely to radiate 
and couple with nearby equipment

• Magnetic field accumulates

Fields fall off         for long wires

• Magnetic field cancels

Fields fall off           for long wires
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The many faces of the “Common Mode”

• Bearing currents and shaft voltages
– Cause premature bearing failure in electric machines with VFDs
– Shock hazard and voltage stress on insulation

• Leakage currents
– Unintended ground currents typically through capacitive couplings with chassis and heat 

sinks
– Interference with low-power electronics

• Circulating currents
– Steady-state current flow between paralleled converters
– Can be large and low-frequency, down to DC
– Lossy, can cause instability, and unbalanced power sharing
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DIFFERENTIAL-MODE AND COMMON-
MODE EQUIVALENT CIRCUIT MODELING
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Objectives of modeling conducted EMI

• Analytically predict parasitic/undesirable behavior of power electronic 
systems

• Inform/guide measurements to support modeling and analysis
• Predict the impact of new technologies (e.g., WBG devices)
• Evaluate methods to mitigate EMI and CM current through design
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Modified definition for CM voltage enables 
rigorous & flexible model generation

Common Mode

Differential Mode
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P is arbitrary

A. D. Brovont, "Generalized Differential-Common-Mode Decomposition for Modeling Conducted Emissions in Asymmetric Power Electronic Systems," IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6461-6466, Aug. 2018.
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DM and CM definitions can be viewed generally as 
a space transformation
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These specific definitions lay the foundation 
for CM equivalent circuit modeling.

Example 
microgrid

Reduced CM 
model

CM equivalent circuit theory

Rl /3Lf l /3iCM,lP
vCM,lRs /3 Lfs /3 iCM,s

vCM,s Rdc /2Ldc /2 Pʹ 

3Cwgs 3Cwgl

Lb /2iCM,b

vCM,b

2Cgb

vCM,dc vʹCM,dc

A. D. Brovont & S. D. Pekarek, "Derivation and application of equivalent circuits to model common-mode current in microgrids," IEEE J. Emerg. Sel. Topics Power Electron., 
vol. 5, no. 1, pp.1-12, March 2017.
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Why don’t we just simulate mixed-mode circuits?

• Wide range of time-constants
• Often a large number of electrical components
• Recipe for numerical heartache as number of components increase
• Does not give any design insight unless run many simulations and 

interpret a lot of data
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OR, why do we need CM equivalent circuits?
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Example: platform developed for in situ emissions 
characterization of intermediary conversion systems.

Output LISNsInput LISNs
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• Architecture inspired by MIL-
STD-461 CE-102

• Terminations at input and 
output representative of fielded 
applications

• Platform provides DM and CM 
model validation environment 
for EUT 

• Employed to study leakage 
currents through module 
parasitics
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An example application of the modeling approach
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Half-bridge EMI testbed CM equivalent model
CM equivalent circuit theory
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Half-bridge configuration of UA EMI testbed

A. D. Brovont and A. N. Lemmon, "Common-mode/differential-mode interactions in asymmetric converter structures," in Proc. IEEE Electric Ship Technologies Symposium, Arlington, VA, 2017, pp. 84-90.

Distribution A. Approved for public release, distribution is unlimited. Approved, DCN# 43-5296-19



CM model development in four steps

1. Add important parasitics to MM component models
2. Partition MM model around switches
3. Transform components to CM equivalent circuits
4. Connect component equivalent circuits using CM reference to form 

system model
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1) Create the mixed-mode model
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2) Partition model around switches

3) Decompose components into equivalents 4) Combine equivalents using CM reference
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Step 1: Create the mixed-mode model

• Add parasitics to the standard MM model (if desired or necessary)
• Assuming symmetric parasitics for sake of demonstration

24

Vdc

Zh

Rli

Ll

CliClo

Rlo

Rg

A

Cn

Cn

CpCpCp

Cdc

Rli

Ll

CliClo

Rlo

N
Rlo

Ll

CloCli

Rli

Rlo

Ll

CloCli

Rli

vQ1

vQ2

Distribution A. Approved for public release, distribution is unlimited. Approved, DCN# 43-5296-19



Step 2: Partition MM model around switches

Focus on the non-power-electronic elements – partition into groups 
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Step 3: Symmetric lines transform following 
simple parallel addition rules in CM.

26

Mixed-mode Model CM Equivalent Circuit
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A. D. Brovont & S. D. Pekarek, "Derivation and application of equivalent circuits to model common-mode current in microgrids," IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp.1-12, March 2017.
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Step 3(a) Detail
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Step 3(b): three-line example
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Step 3(b) Detail
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Step 4: Form system model by specifying reference 
point(s)

31

Rli/2

Ll /2io

2Cli

ii
vovi

vp

Zh

3Cp

2Clo

Rli/2

Ll /2

2Cli2Clo

Rlo/2 Rlo/2

Rg

A

  cm

  cm  cm

  cm   cm

Rh

Rli

Ll

CliClo

Rlo

Rg

A

CpCpCp

Cdc

Rli

Ll

CliClo

Rlo

Rlo

Ll

CloCli

Rli

Rlo

Ll

CloCli

Rli

N

v 2
A

L

U

1 2 3

Distribution A. Approved for public release, distribution is unlimited. Approved, DCN# 43-5296-19



Step 4: Form system model by specifying reference 
point(s)

• Select shared reference point and 
connect CM equivalent circuits

• Phase node A is selected in this example

Intrinsic CM voltage sources
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Overall system model
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Half-bridge EMI testbed CM equivalent model
CM equivalent circuit theory

Half-bridge configuration of EMI testbed
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ioii
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How to model effects of asymmetry?

• Asymmetry between lines of a 
CM path produces “mode 
conversion”

• Introduce an asymmetry factor 
k in module parasitics to 
investigate impact
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Mixed-mode ModelDecomposition approach to 
asymmetric components
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Mixed-mode Model CM Equivalent Circuit
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Decomposition approach to asymmetric components
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A. D. Brovont, "Generalized Differential-Common-Mode Decomposition for Modeling Conducted Emissions in Asymmetric Power Electronic Systems," IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6461-6466, Aug. 2018.
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Overall system model
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Half-bridge EMI testbed CM equivalent model
CM equivalent circuit theory
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A. D. Brovont and A. N. Lemmon, "Common-mode/differential-mode interactions in asymmetric converter structures," in Proc. IEEE Electric Ship Technologies Symposium, Arlington, VA, 2017, pp. 84-90.
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Bonus: Analyze/approximate output CM voltage 
source

The second term is the CM voltage of the neutral-clamping 
capacitors. If Cn is large, this voltage is approximately constant:
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A. D. Brovont and A. N. Lemmon, "Common-mode/differential-mode interactions in asymmetric converter structures," in Proc. IEEE Electric Ship Technologies Symposium, Arlington, VA, 2017, pp. 84-90.
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Bonus: Analyze/approximate mode conversion 
source

The second term is the CM voltage of the neutral-clamping 
capacitors. If Cn is large, this voltage is approximately constant:
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A. D. Brovont and A. N. Lemmon, "Common-mode/differential-mode interactions in asymmetric converter structures," in Proc. IEEE Electric Ship Technologies Symposium, Arlington, VA, 2017, pp. 84-90.
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Summary: CM equivalent model of the testbed
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• CM voltage sources dominated by 
switching
– dv/dt & switching frequency critical 

parameters

• Voltage ripple at neutral point 
injected into CM
– Self-resonant behavior of Cn must be 

avoided (ESL critical)

• Voltage ripple at dc input injected 
due to mode conversion
– Self-resonant behavior of Cdc must be 

avoided (ESL critical)
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APPLICATION AND VALIDATION OF 
CM MODELING APPROACH
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UA SiC EMI Characterization Testbed 
Implementation

• Identical, characterized input and 
output termination impedances

• Natural convection cooling to avoid 
corruption from thermal management

• Diff. probes and current probes used 
for utility ground isolation

• Testbed and utility ground connected 
only through DC supply

• Testbed configured with half-bridge 
inverter EUT employing Cree CAS120 
1.2-kV SiC half-bridge MCPM
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A. Brovont, A. Lemmon, C. New, B. Nelson, B. DeBoi, "Cancellation of Leakage Currents through Power Module Baseplate Capacitance," in Proc. IEEE Appl. Power Electron. Conf., March 2019.
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Leakage current through MCPM was measured in 
the EMI characterization testbed.

• Half-Bridge EUT with shorted 
load (only LISN impedance)†

– Measured displacement current 
through MCPM baseplate through  
LISNs on input and output.

– 100 kHz fixed-duty PWM, 300 ns 
dead time, 600 V DC bus

• Results were compared against 
nominal model with measured 
parasitic baseplate capacitances

43

†A. Lemmon, R. Cuzner, J. Gafford, R. Hosseini, A. Brovont, M. Mazzola, "Methodology for Characterization of Common-Mode Conducted Electromagnetic Emissions in Wide-Band-Gap Converters for Ungrounded 
Shipboard Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 300-314, March 2018.
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Characterizing the MCPM Baseplate Capacitance
• Baseplate capacitance was not 

measured previously
• Cannot be measured from the 

terminals
• A sample module (Cree 

CAS120) from the EMI testbed 
was deconstructed to 
accurately quantify the 
capacitances
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CM voltage noise source modeling

• The dominant component of the 
CM voltage is proportional to 
(vQ1-vQ2)

• This term is readily modeled 
from the nominal input voltage, 
duty cycle, and average rise and 
fall time of the switch voltage:
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Equivalent model reduced and analyzed to predict 
baseplate current.
• The expression for the equivalent CM source with respect 

to the baseplate is approximately

• Model indicates strong influence of MCPM parasitic 
asymmetry and potential compensation†
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STUDY OF BASEPLATE CAPACITANCE 
IN MULTICHIP POWER MODULES
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D1 (U) S1D2 (A)S2 (L)

Unbalanced baseplate capacitance is a critical 
factor affecting leakage current through baseplate.
• DBC substrate geometry leads to 

capacitive coupling between 
terminals and baseplate

• High dv/dt drives leakage current 
through the baseplate

• Low-side source terminal (S2) 
usually occupies much less 
substrate area than D1 and S1D2
(which are similar)

• In general, D1, S1D2, and S2 substrate 
areas are all different leading to 
unequal Cug, Cag, and Clg
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Relaxed concept of CM voltage and flexible DM 
and CM definitions permit derivation of CM 
equivalent model.
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Analysis of leakage current through the 
MCPM baseplate

• The equivalent CM ac voltage driving BP 
current is given by

where

• In a typical module, 
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Experimental setup was devised to validate 
the CM model predictions.

• Discrete capacitors were placed between the 
module terminals and the baseplate

• The qac parameter was swept across the range 
including the “critical” value of 1/4 

• Total baseplate capacitance (Cbp) was held 
constant for all cases
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Results of the qac sweep experiments
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• Model accurately predicts BP current RMS 
amplitude over full sweep

• Cancellation occurs at the qac = 1/4
• Model accurately predicts the polarity 

inversion and symmetry about the “critical” 
qac value of 1/4
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Model accurately predicts all significant characteristics of 
the BP current including ringing frequency and amplitude.
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