

## Thermal simulations of SiC MOSFETs under short-circuit conditions: influence of various simulation parameters

<u>Yoann Pascal</u>, Mickaël Petit, Denis Labrousse, François Costa Laboratory SATIE, Paris, France

This work was supported by a grant overseen by the French National Research Agency (ANR-15-CE05-0010) – project HIT-TEMS

24/06/2019

## Context : top-side connection techniques

- Bond wires:
  - Mature & economical
  - Relatively high inductance and resistance
  - Limited reliability & robustness
  - Single side cooling
- Many replacement candidates:
  - Al or Cu bonding ribbons or clips
  - Cu posts
  - Sintered/soldered flexible PCB
  - PCB embedding
  - Etc.





[Beckedahl et al. APEC'13]



[Gottwald et al. PCIM'14]

## **SATIE** Context: proposed die top-side connection technique





- 1. Context: an original die top-side connection technique using pressed metal foam
- 2. Litterature review : junction temperature simulation during short-circuits
- 3. SiC MOSFET  $T_j$  simulation during short-circuits
  - 1. Proposed model
  - 2. Influence of the model of power source
  - 3. Can one simplify Fourier's equation?
  - 4. Influence of the boundaries
- 4. Robustness improvement brought by the proposed process
- 5. Discussion & Conclusion



1. Context: an original die top-side connection technique using pressed metal foam

#### 2. Litterature review : junction temperature simulation during short-circuits

- 3. SiC MOSFET  $T_i$  simulation during short-circuits
  - 1. Proposed model
  - 2. Influence of the model of power source
  - 3. Can one simplify Fourier's equation?
  - 4. Influence of the boundaries
- 4. Robustness improvement brought by the proposed process
- 5. Discussion & Conclusion



24/06/2019

### Litterature review

#### Various simulation parameters: Ref n° [14] [14] [8] [9] [7] [4] [10] [2] [13] [12] [12] [19] [15] [20] [16] N. dimensions 2D 2D 1D EZ3D EZ3D EZ3D 3D 3D 1D 1D 1D 1D 1D 1D 1D >0 power source depth >0 >0 > 0> 0> 0> 0 > 0>0 = 0 power source width >0 >0 = 0 >0 > 0 > 0> 0> 0 >0 >0 $0 \neq d(\lambda, cp)/dT$ SiC only SiC only SiC only yes SiC only no no no Top boundary **∇T**=0 **∇T**=**0** $\nabla T=0$ **∇T**=0 **∇T**=**0 ∇T**=0 **∇T**=0 **∇T**=**0 ∇T**=0 **∇T**=0 **∇T**=0 **∇T**=0 Bot boundary RC T=Ta RC T=Ta T=Ta T=Ta T=Ta RC T=Ta T=Ta T=Ta T=Ta E-Field profil Δ Δ Δ Δ Δ Δ Δ δ Δ References detailled in the paper Some simulation results: 2D -simulation 2D vs. EZ3D vs. **3D simulations:** 2200 FTS drain-source failure 200 1200 2000 Cemperature of the 160 1800 operature of the thermal runa 1000 erature of the fail Estimated T<sub>1</sub> (K) 1000 1000 1000 1600 Temperature [K] Drain Current [A] 120 [10] 0 FTO V<sub>DS</sub>=600V **EZ3D**-simulation **3D**-simulation Gate-source failure 80 V<sub>DS</sub>=400V V<sub>DS</sub>=300V V<sub>DS</sub>=250V 800 V<sub>DS</sub>=225V 125.86 40 Effect of the 186.25 -V<sub>DS</sub>=200V 600 Aluminium 400 V<sub>DS</sub>=150V melting 400 0 10 15 20 25 0 5 <sup>100</sup>t (µs) 0 50 150 200 Time [µs] [3] 10us [14] [Boige et al. Microelec. Rel. 2018] [Romano et al. IEEE JESTPE, 2016]

**Yoann Pascal** 

6



- 1. Context: an original die top-side connection technique using pressed metal foam
- 2. Litterature review : junction temperature simulation during short-circuits

#### 3. SiC MOSFET $T_i$ simulation during short-circuits

- 1. Proposed model
- 2. Influence of the model of power source
- 3. Can one simplify Fourier's equation?
- 4. Influence of the boundaries
- 4. Robustness improvement brought by the proposed process
- 5. Discussion & Conclusion

## Proposed model (1)

**Yoann Pascal** 

- 1D-model
- Heat equation :  $\rho c_p \frac{\partial T}{\partial t} \frac{d}{dz} (\lambda \nabla T) = \dot{q_v}$
- Dicretised equation: finite difference method, solved in Matlab

with:  $\Delta t = 10 \text{ ps}$ ,  $\Delta z = 150 \text{ nm}$ 

- Boundaries: irrelevant
- Power source :

24/06/2019

 $z_n = \sqrt{\frac{2\epsilon_{SiC}V_{dS}}{qN_d}} \approx 8 \ \mu m$  Depletion layer width  $z_i = 1 \ \mu m$  Depletion layer depth

Current waveform taken from measurements:



Short-Circuit duration:  $11 \ \mu s$  (until failure)



24/06/2019

## Proposed model (2)

0.6

0.4

0.2 200 SiC

600

 $T(\mathbf{K})$ 

800

1000

400

- Temperature dependance of  $(\lambda, c_p)$  taken into account for :
  - Aluminum, Nickel, SiC
- Top molding : nickel foam & epoxy filler homogenised:  $\lambda_{NiFO} = \alpha_{Ni} \cdot \lambda_{Ni} + (1 - \alpha_{Ni}) \cdot \lambda_{epoxy}$

Idem for density and thermal capacity

 $\alpha_{Ni} = 30 \%$  : our process

 $\alpha_{Ni} = 0$  % : pure resin  $\approx$  discrete wire-bonded die

| @298 K    | λ (W/mK) | $c_p$ (J/K $\cdot$ kg) | ho (kg/m³) |
|-----------|----------|------------------------|------------|
| Aluminium | 239      | 910                    | 2699       |
| Nickel    | 91       | 443                    | 8902       |
| Ероху     | 0.3      | 900                    | 1250       |
| Molding   | 27.6     | 763                    | 3546       |
| SiC       | 353      | 1031                   | 3211       |
| Solder    | 60       | 160                    | 7400       |



9

1200

## On the choice of boundary conditions

- Short-circuit duration =  $11 \ \mu s \sim 100 \ \text{kHz}$
- Thermal skindepth:  $\delta_{th} = \sqrt{\frac{\lambda}{\rho c_p \pi f}}$



- Heat does not reach solder
- No energy stored in the epoxy molding
- $\Rightarrow$  Limited impact of the bottom-side boundary condition  $\Rightarrow$  No need to model the molding

#### Temperature at the end of the short-circuit



| Energy storage: |                                                 |                                           |
|-----------------|-------------------------------------------------|-------------------------------------------|
|                 | <b>α</b> <sub>Ni</sub> = <b>0</b><br>Pure epoxy | <b>α<sub>Ni</sub>= 0.3</b><br>30 % nickel |
| Molding         | 4 %                                             | 18 %                                      |
| Aluminum        | 13 %                                            | 10 %                                      |
| SiC             | 83 %                                            | 72 %                                      |

24/06/2019

SATIE

# **SATI** Impact of the $(\lambda, c_p)$ temperature dependance?



| Energy storage: |                                                |                                             |  |
|-----------------|------------------------------------------------|---------------------------------------------|--|
|                 | <i>α<sub>Ni</sub></i> = <b>0</b><br>Pure epoxy | α <sub>Ni</sub> = <b>0.3</b><br>30 % nickel |  |
| Molding         | 4 %                                            | 18 %                                        |  |
| Aluminum        | 13 %                                           | 10 %                                        |  |
| SiC             | 83 %                                           | 72 %                                        |  |

⇒ high impact of the temperature dependance of  $(\lambda, c_p)$ The aluminium layer should be modeled

## Influence of the model of power source

• Litterature review:

SATIE



24/06/2019



- 1. Context: an original die top-side connection technique using pressed metal foam
- 2. Litterature review : junction temperature simulation during short-circuits
- 3. SiC MOSFET  $T_i$  simulation during short-circuits
  - 1. Proposed model
  - 2. Influence of the model of power source
  - 3. Can one simplify Fourier's equation?
  - 4. Influence of the boundaries

#### 4. Robustness improvement brought by the proposed process

5. Discussion & Conclusion

## Robusteness improvement @ $\alpha_{Ni} > 0$



 $@\alpha_{Ni} = 0$ , the 'failure' temperature is reached 4 µs before  $@\alpha_{Ni} = 30\%$ 

SATIE

#### $\Rightarrow$ this could correpond to a 60 % improvement when using Foam rather than bond wires



- 1. Context: an original die top-side connection technique using pressed metal foam
- 2. Litterature review : junction temperature simulation during short-circuits
- 3. SiC MOSFET  $T_i$  simulation during short-circuits
  - 1. Proposed model
  - 2. Influence of the model of power source
  - 3. Can one simplify Fourier's equation?
  - 4. Influence of the boundaries
- 4. Robustness improvement brought by the proposed process
- 5. Discussion & Conclusion

## **Discussion & Conclusion**

- The influence of some simulation parameters has been studied:
  - Limited impact of the choice of bottom-side boundary conditions
  - High impact of the temperature dependance of  $(\lambda, c_p)$
  - The aluminium layer should be modeled, the molding may not
  - Great influence of the power source model
- Other parameters are yet to be assessed:
  - 1D model?
  - Effect of SiC doping concentration on  $(\lambda, c_p)$ ?
- On the process with top-side connection using pressed metal foam:
  - Simulated time to failure increased by 4 µs when using  $\alpha_{Ni} = 30$  % rather than  $\alpha_{Ni} = 0$





## Thermal simulations of SiC MOSFETs under short-circuit conditions: influence of various simulation parameters

<u>Yoann Pascal</u>, Mickaël Petit, Denis Labrousse, François Costa Laboratory SATIE, Paris, France

This work was supported by a grant overseen by the French National Research Agency (ANR-15-CE05-0010) – project HIT-TEMS

24/06/2019

24/06/2019

### Short-circuit measurement

- Dies under study: C2M-1200-0025b
  - SiC MOSFET from Cree
  - 1200 V 98 A 25 m $\Omega$
- Test conditions:
  - Drain-source voltage: 600 V
  - Driving voltage: -5/+18 V
  - Gate resistance: 51  $\Omega$







## Context : die PCB-embedding techniques

#### Standard process:



- Quite costly

24/06/2019

SATIF

- Require dies with a specific top-side layer
- Good electrical performances



- Compatible with standard PCB-facilities
- Electrical performances close to that of bond-wires [Y. Pascal et al, PCIM'18]
- Nickel foam with high porosity (96 %) and small cells (350 μm)
- Process not mature, not industrialised

γ