Thermal Response of Additive Manufactured Aluminum

Tong Wu, Andrew A. Wereszczak, Hsin Wang, Burak Ozpineci, and Curt W. Ayers

Email: wut1@ornl.gov

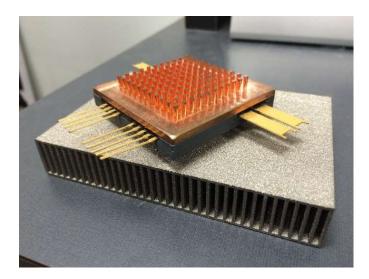
-Bredesen Center, University of Tennessee, Knoxville, TN -Power Electronics and Electric Machinery Research Center, Oak Ridge National Laboratory, Knoxville, TN -Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

2016 International Symposium on 3D Power Electronics Integration and Manufacturing June 13, 2016

Benefits Brought by 3D Printing

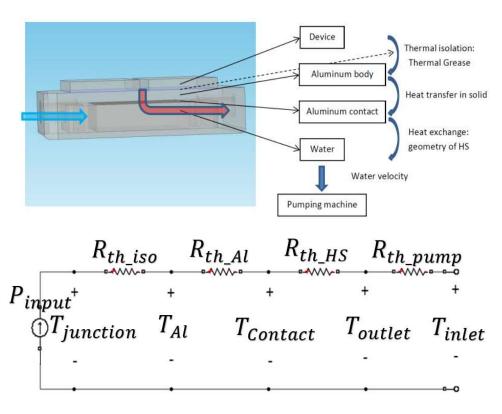
- Complexity free without additional cost
 - More degrees of freedom
 - Higher performance thermal management system
 - Higher fill factor
 - Higher power density
- Fast manufacture response time
 - Rapid prototyping
- More integrated functions and components
- Reduction in component count
 - Simplify the assemble process

3D Printing in Power Electronics


Polymers
Metals
Titanium
Aluminum
Stainless Steel
Copper
Brass
others
• •

Ceramics

National Laboratory


Aluminum Alloys

Conventional manufactured	3D printed
6xxx series(Al-Mg-Si)	
5xxx series(Al-Mg)	AlSi10Mg
3xxx series	
1xxx series	
RIDGE	

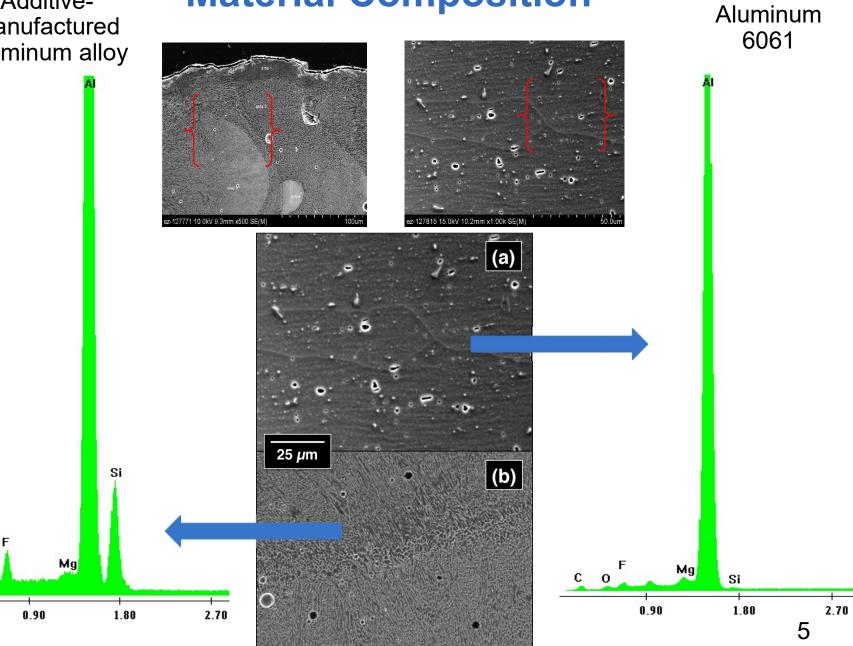
Conjugate Heat Transfer – Liquid cooled system

$$T_{outlet} = T_{inlet} + R_{th \, pump} \times P_{input}.$$

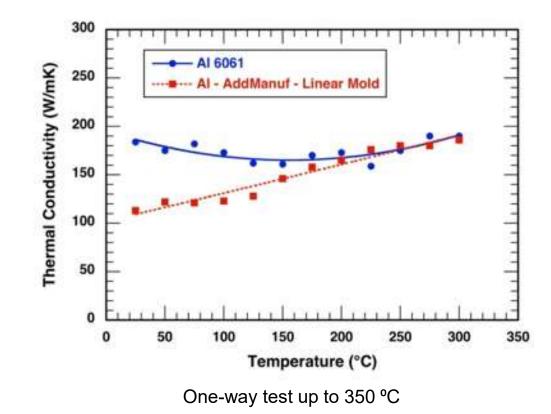
$$T_{junction} = T_{inlet} + (R_{th_{isolation}} + R_{th_{Aluminum}})$$

$$OAK + R_{th HE} + R_{th pump}) \times P_{input}$$

$$RIDGE_{National Laboratory}$$


- A different heat dissipation.
- Changing $R_{th \, isolation}$ or even eliminating the thermal grease
- Changing $R_{th pump}$ by adjusting the liquid inlet speed
- Changing T_{inlet} , which will be again determined by the cooling costs.
- Varying $R_{th Aluminum}$, affected by the thermal conductivity of the material used

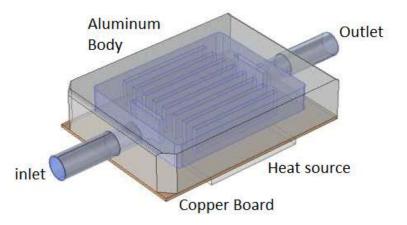
$$R = \frac{1}{\sigma} \cdot \frac{l}{A}$$


• Using a different heat sink geometry, which introduces different $R_{th HE}$ values.

Material Composition

Additivemanufactured Aluminum alloy

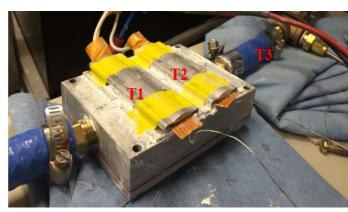
Thermal Conductivity



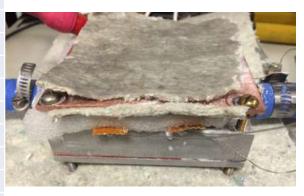
Identical heat sinks

- 2 identical geometry Aluminum heatsinks
- Both contact surfaces are polished evenly
- Manufactured by conventional Aluminum 6061/ Additive manufactured Aluminum
- Size of the heatsink body is $4 inch \times 3 inch \times 1 inch$

Heat sink manufactured for test

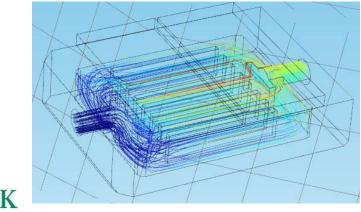


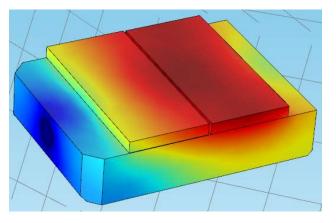
Heat sink model for FEA simulation



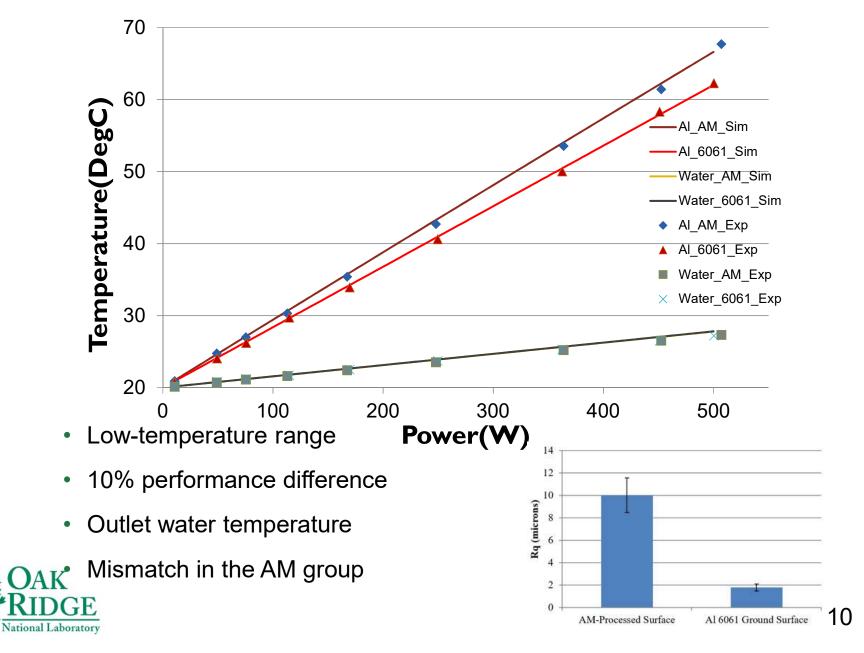
Experimental Setup

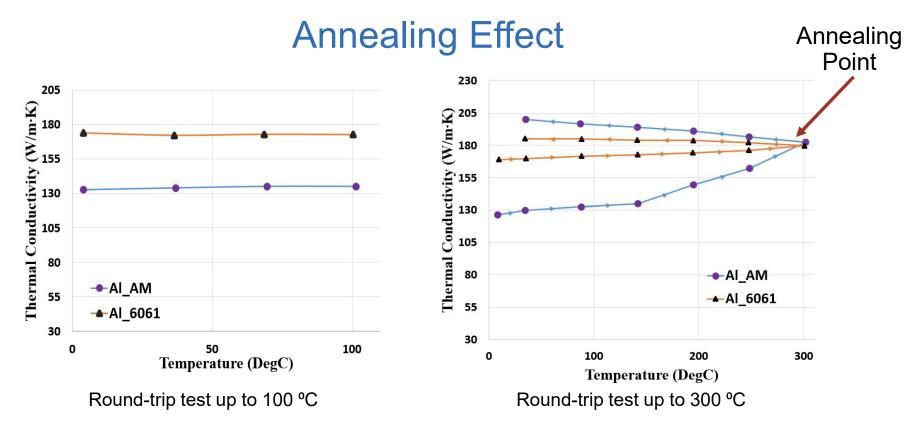
- Two series heat sources with cross voltage changes from 10V 45V
- Thermal grease is used
- Thermal resistance cover is mounted
- Recycling loop pump provides inlet water speed 1.1 L/min at 20°C
- Three temperatures are measured
- K type Omega thermal couples with a precision of 0.1°C


Voltage(V)	Current(A)	Power(W)
10	1.08	10.8
20	2.45	49
24	3.145	75.48
28	4.04	113.12
32	5.23	167.36
36	6.89	248.04
40	9.1	364
43	10.525	452.575
45	11.27	507.15



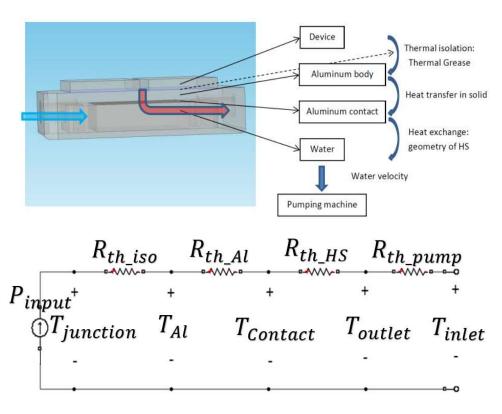
Simulation Setup


- Two heat sources provide power in total from 10W 500W
- A thermal isolation layer is defined as thermal conductivity of 0.8W/(m·K) and thickness of 0.3 mm
- No natural convection heat exchange
- Inlet set as laminar flow rate of 1.1 L/min and temperature of 20°C
- Temperatures of three identical location as the experimental group are measured
- COMSOL is used as the FEA simulation software



Results Comparison and Significance

Post-processing



Over the annealing point, the thermal property of the Al_AM will permanently change, and the gap of material properties is erased.

One possible solution!

Conjugate Heat Transfer – Liquid cooled system

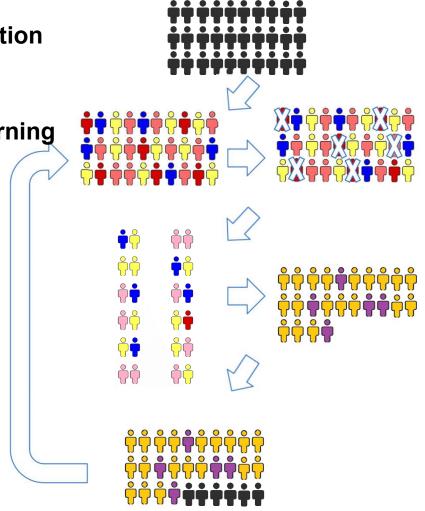
$$T_{outlet} = T_{inlet} + R_{th \, pump} \times P_{input}.$$

$$T_{junction} = T_{inlet} + (R_{th_{isolation}} + R_{th_{Aluminum}})$$

$$OAK + R_{th HE} + R_{th pump}) \times P_{input}$$

$$RIDGE_{National Laboratory}$$

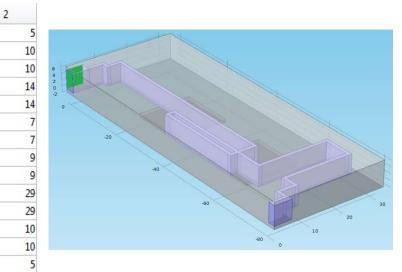
- A different heat dissipation.
- Changing $R_{th \, isolation}$ or even eliminating the thermal grease
- Changing $R_{th pump}$ by adjusting the liquid inlet speed
- Changing T_{inlet} , which will be again determined by the cooling costs.
- Varying $R_{th Aluminum}$, affected by the thermal conductivity of the material used

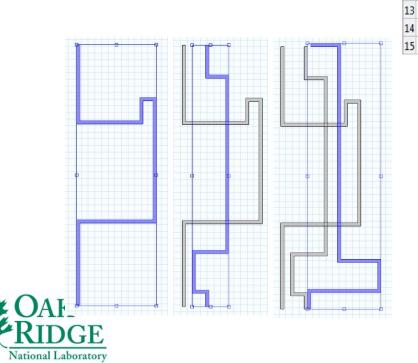

$$R = \frac{1}{\sigma} \cdot \frac{l}{A}$$

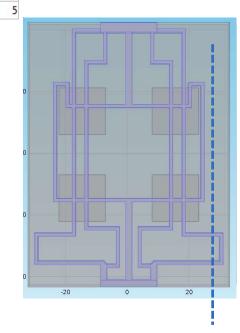
• Using a different heat sink geometry, which introduces different $R_{th HE}$ values.

Genetic Algorithms Approach

- Solution space searching algorithm
- Imitates the process of natural evolution
- "Survival of the fittest"
- Evolves automatically Machine learning
 - Initialize Population
 - Evaluation and Selection
 - Crossover and Mutation
 - Reproduction

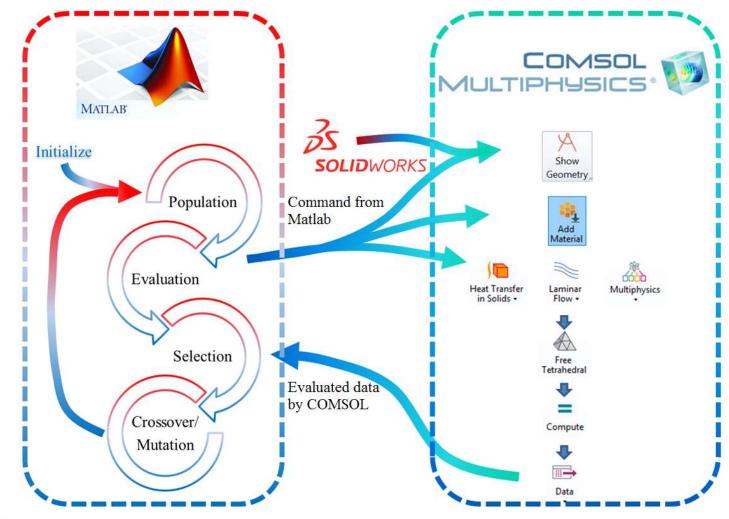

 $Fitness = \Delta T + P_{drop}/2^{\gamma}$ $(Rank(i)/Sum(rank))^{\alpha}$

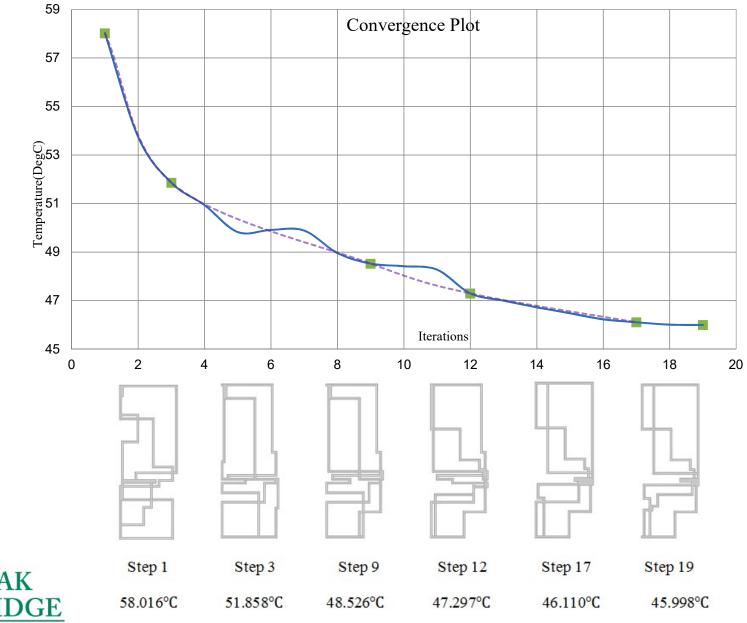



T. Wu, B. Ozpineci, and C. Ayers, "Genetic algorithm design of a 3D printed heat sink," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2016. pp. 3529 – 3536.

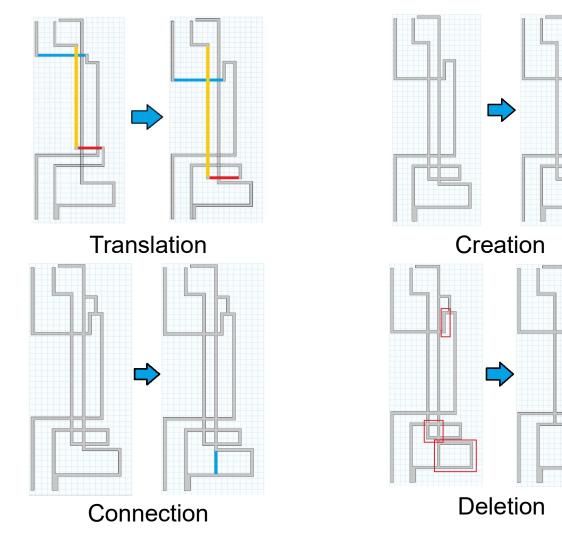
Random Walking Process

1										
	'Start from(1,10)'	'Start from(1,9)'	'Start from(1,8)'	'Start from(1,7)'	'Start from(1,6)'	'Start from(1,5)'	'Start from(1,4)'	'Start from(1,3)'	'Start from(1,2)'	Start from(1,1)'
4	12x2 double	27x2 double	8x2 double	7x2 double	27x2 double	27x2 double	[]	7x2 double	[1,2;1,1;31,1;31	24x2 double
3	[]	0	0	0	0	17x2 double	6x2 double	0	0	1
_	7x2 double	[]	[1,8;1,1;78,1;78	18x2 double	0	0	7x2 double	14x2 double	0	12x2 double
4	0	[1,9;79,9;80,9]	0	[]	0	14x2 double	0	0	0	1
	[]	23x2 double	8x2 double	[]	0	0	0	7x2 double	0	1,1;1,29;77,29;
5	11x2 double	9x2 double	7x2 double	10x2 double	60x2 double	8x2 double	13x2 double	7x2 double	7x2 double	9x2 double
6	11x2 double	23x2 double	9x2 double	21x2 double	1	0	0	Π	0]
0	11x2 double	0	0	21x2 double	0	[1,5;77,5;80,5]	0	[]	0	1
7	[1,10;1,30;21,30	0	12x2 double	15x2 double	[]	27x2 double	0	0	33x2 double	1
	14x2 double	0	0	0	[1,6;1,1;45,1;45	9x2 double	7x2 double	16x2 double	7x2 double	29x2 double
8	[1,10;1,27;78,27	37x2 double	7x2 double	36x2 double	7x2 double	[1,5;1,9;39,9;39	9x2 double	37x2 double	10x2 double	33x2 double
9	11x2 double	[1,9;1,28;25,28;	12x2 double	6x2 double	11x2 double	11x2 double	26x2 double	10x2 double	[1,2;79,2;80,2]	12x2 double
3	9x2 double	[1,9;1,7;63,7;63	7x2 double	7x2 double	[1,6;1,3;71,3;71	33x2 double	0	0	14x2 double	37x2 double
10	0	15x2 double	[]	10x2 double	0	0	0	[1,3;1,27;6,27;6	20x2 double]
	31x2 double	0	0	10x2 double	0	0	[1,4;1,23;19,23;	0	35x2 double	1,1;79,1;80,1]
1										

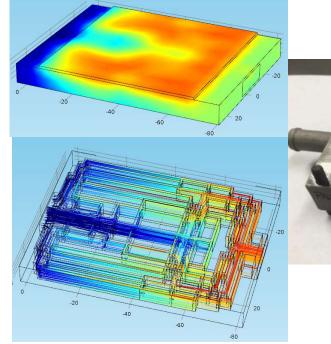




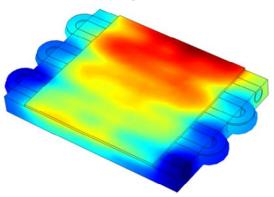
Machine Learning Optimization

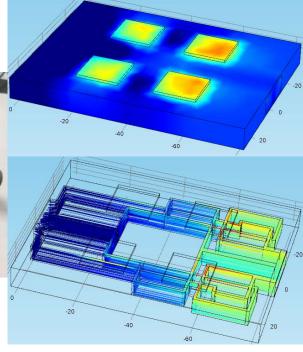


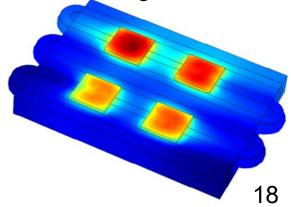
Convergence



Second stage genetic algorithm approach




Optimization Results


17.1% junction temperature reduction & 33% weight reduction

22.8% junction temperature reduction & 16% weight reduction

Conclusion

- In this paper, both experimental and simulation comparisons between additive manufactured Aluminum heat sink and the conventional heat sink, have been studied and obvious differences are shown.
- A post-processing is proposed to modify the degraded performance.
- Genetic algorithm combining with the machine learning process is developed to realize automatically evolve and eventually can be used to to optimize a better and unique printed heat sink based on the given heat dissipation, distribution and the allowed volume.

Questions

Thank you!