SATiE

Study of the Impedance of the Bypassing Network of a Switching Cell - Influence of the Positioning of the Decoupling Capacitors

Yoann Pascal, Mickaël Petit, Denis Labrousse, François Costa
Laboratory SATIE, Paris, France
This work was supported by a grant overseen by the
French National Research Agency (ANR-15-CE05-0010) - project HIT-TEMS

Introduction

- Parasitic elements induce:
- HF oscillations leading to Common and Diff. Modes currents \Rightarrow expensive \& bulky filtering required
- Overvoltages at switches turn-on force to oversize components \Rightarrow cost, increased losses, reduced performances
- Effects worsen by the use of Wide-BandGap semiconductors
- Minimise oscillations and overshoots:
$\Rightarrow \quad$ Minimise parasitic inductances
$\Rightarrow \quad$ Maximise compactness
- Good thermal performances:
- Improves reliability, efficiency, derating
- Low thermal coupling between components
$\Rightarrow \quad$ Space components
\rightarrow Trade-off between electrical and thermal performances
+ Modularity, shared heatsink and bypass capacitors for multi-cellular converters
- Study the effects of parasitic inductances on a switching cell
- Quantify the trade-off between electrical and thermal performances

Agenda

1. Introduction
2. Oscillation mechanisms in a switching cell
3. Influence of the distance between a switching cell and its bypassing network
4. Conclusion

Agenda

1. Introduction
2. Oscillation mechanisms in a switching cell
3. Influence of the distance between a switching cell and its bypassing network
4. Conclusion

SATiE
 Bypassing network impedance diagram

Circuit under study:

Schematic with parasitic elements: (mutual inductances and resistances neglected)

SATiE

Bypassing network impedance diagram

Simplified model:

- Assume: $C_{o u t} \ll C_{X 7 R} \ll C_{b u l k} \& L_{1} \ll L_{2} \ll L_{3}$

Schematic with parasitic elements: (mutual inductances and resistances neglected)

Increasing oscillation
frequency
$\Rightarrow \quad f_{\text {res }_{1}} \gg f_{\text {res }_{2}} \gg f_{\text {res }_{3}}, \quad f_{\text {res }_{i}}=\left(2 \pi \sqrt{L_{i} C_{i}}\right)^{-1}$
\Rightarrow Decoupled loops

SATE

Model

- Neglect damping
- Assume high switching speed
(hard to estimate a priori)

Oscillation mecanisms: synthesis

Current step

- HF overvoltage: $\Delta V=I_{l d} \cdot Z_{c}, \quad Z_{c}=\sqrt{L_{1} / C_{o u t}}$
- LF overvoltage: $\Delta V=I_{l d} \cdot Z_{c}, \quad Z_{c}=\sqrt{L_{2} / C_{X 7 R}}$
- VLF overvoltage: $\Delta V=I_{l d} \cdot Z_{c}, \quad Z_{c}=\sqrt{L_{3} / C_{b u l k}}$

Voltage step

- HF overvoltage: $\Delta V=V_{b u s} e^{-\pi / \sqrt{4 Q^{2}-1}} \approx V_{b u s}$,

LF overvoltage: $\Delta V=V_{b u s} \cdot\left|\frac{C_{1}}{C_{\text {out }}}-\frac{L_{1}}{L_{2}}\right|^{-1} \approx 0$

- VLF overvoltage: $\Delta V \approx 0$
- The overall overvoltage should consider interferences between spectral components
- Hypothesis valid for fast edges:

$$
t_{r} \approx 0, \quad \text { ie. } \frac{1}{\pi t_{r}}>f_{r e s}
$$

\Leftrightarrow edge fast enough to stimulate the mode

- Simplified equations: unknown damping
- Worst-case scenario

Model experimental validation

Fast edges assumption:

$$
\frac{1}{\pi t_{r}}>f_{\text {res }} \Leftrightarrow t_{r}<2 \sqrt{C_{\text {out }} \cdot L_{1}}
$$

$\boldsymbol{C}_{\text {out }}$	$\boldsymbol{L}_{\mathbf{1}}$	Related devices	$2 \sqrt{C_{\text {out }} \cdot L_{1}}$
100 pF	1 nH	GaN	$0,63 \mathrm{~ns}$
1 nF	1 nH	$\mathrm{GaN} / \mathrm{SiC} / \mathrm{Si}$	2 ns
1 nF	10 nH	$\mathrm{SiC} / \mathrm{Si}$	$6,3 \mathrm{~ns}$
10 nF	100 nH	Si	63 ns
		Max t_{r} so that the asumption holds	\uparrow

- Strong assumption for silicon devices
- Reasonable assumption for low voltage GaN
- Designers therefore need:
- $50 \% V_{d s}$-derating
- Artificially decrease slew-rates
- Increase $C_{\text {out }}$

Agenda

1. Introduction
2. Oscillation mechanisms in a switching cell
3. Influence of the distance between a switching cell and its bypassing network
4. Conclusion

SATiE

Circuit under study (1)

Bulk capacitor
$C_{\text {bulk }}$: MKP, $875 \mathrm{~V}-15 \mu \mathrm{~F}$

SATiE

Circuit under study (2)

+ floating copper plane, $400 \mu \mathrm{~m}$ below

SATiE
 Measurements \& inductance estimation

- Measured switching node voltage fitted with:

$$
V_{s w}^{*}=V_{d c}+\sum_{k=1}^{k=3} \hat{V}_{k} \cdot \sin \left(\omega_{k} t+\phi_{k}\right) \cdot e^{-t / \tau_{k}} \quad \Rightarrow L_{k}=\frac{1}{\omega_{k}^{2} \cdot C_{k}}
$$

Optim. vector: $\beta=\left[V_{d c}, \hat{V}_{k}, \omega_{k}, \phi_{k}, \tau_{k}\right]_{k}$

Inductance $v s$. distance

- Low impact of d_{x} on L_{x}
- Slow inductance increase: $300 \mathrm{pH} / \mathrm{cm}$
- Predominance of the bulk capacitor ESL on the loop inductance
- Moderate inductance, even for $d_{X 7 R}=300 \mathrm{~mm}$

Power network impedance diagram:
($Q_{H S}$ on, $Q_{L S}$ off, output connected to a Z-analyser)

Small signal measurements yields similar results

Agenda

1. Introduction
2. Oscillation mechanisms in a switching cell
3. Influence of the distance between a switching cell and its bypassing network
4. Conclusion

Conclusion

Oscillation mechanisms in a switching cell:

- For fast enough devices, 2 mechanisms are at stakes:
- Voltage-step induced overvoltage: $\widehat{V}=V_{\text {bus }}$
- Curent-step induced overvoltage: $\widehat{V}=I_{l d} \cdot Z_{c}$, for each loop
regardless of the parasitic inductances
\Rightarrow minimise parasitic inductances
Influence of the distance between a switching cell and its bypassing network:
- Low impact of the distance on the inductance thanks to:
- Simple but effective layout (edge-coupled micro-strip)
- Bottom side copper plane
- Thin $(400 \mu \mathrm{~m})$ subtrate

Given the layout under study:

- Moderate inductance, even at high distances (11 nH @30 cm)
- Degree of liberty on the components positionning:
- Improved performances
- Simplified cooling \& mechanical design/layout
- Component sharing: heatsink, bypass capacitors

SATiE

Study of the Impedance of the Bypassing Network of a Switching Cell - Influence of the Positioning of the Decoupling Capacitors

Yoann Pascal, Mickaël Petit, Denis Labrousse, François Costa
Laboratory SATIE, Paris, France
This work was supported by a grant overseen by the
French National Research Agency (ANR-15-CE05-0010) - project HIT-TEMS

