

Study of the Impedance of the Bypassing Network of a Switching Cell – Influence of the Positioning of the Decoupling Capacitors

Yoann Pascal, Mickaël Petit, Denis Labrousse, François Costa Laboratory SATIE, Paris, France

This work was supported by a grant overseen by the French National Research Agency (ANR-15-CE05-0010) – project HIT-TEMS

24/06/2019

Introduction

- Parasitic elements induce:
 - HF oscillations leading to Common and Diff. Modes currents ⇒ expensive & bulky filtering required
 - Overvoltages at switches turn-on force to oversize components ⇒ cost, increased losses, reduced performances
- Effects worsen by the use of Wide-BandGap semiconductors

•	Minimise oscillations and overshoots:		Good thermal performances:	
	\Rightarrow	Minimise parasitic inductances	 Improves reliability, efficiency, derating 	
			Low thermal coupling between components	
-	\Rightarrow	Maximise compactness	\Rightarrow Space components	

Trade-off between electrical and thermal performances

- + Modularity, shared heatsink and bypass capacitors for multi-cellular converters
- Study the effects of parasitic inductances on a switching cell
- Quantify the trade-off between electrical and thermal performances

24/06/2019

Yoann PASCAL

- 1. Introduction
- 2. Oscillation mechanisms in a switching cell
- 3. Influence of the distance between a switching cell and its bypassing network
- 4. Conclusion

- 1. Introduction
- 2. Oscillation mechanisms in a switching cell
- 3. Influence of the distance between a switching cell and its bypassing network
- 4. Conclusion

SATIE

Bypassing network impedance diagram

Bypassing network impedance diagram

SATIE

Oscillation mecanisms: synthesis

Current step

- HF overvoltage: $\Delta V = I_{ld} \cdot Z_c$, $Z_c = \sqrt{L_1/C_{out}}$
- LF overvoltage: $\Delta V = I_{ld} \cdot Z_c$, $Z_c = \sqrt{L_2/C_{X7R}}$
- VLF overvoltage: $\Delta V = I_{ld} \cdot Z_c$, $Z_c = \sqrt{L_3/C_{bulk}}$

Voltage step

- HF overvoltage: $\Delta V = V_{bus} e^{-\pi/\sqrt{4Q^2 1}} \approx V_{bus}$, LF overvoltage: $\Delta V = V_{bus} \cdot \left| \frac{C_1}{C_{out}} - \frac{L_1}{L_2} \right|^{-1} \approx 0$
- VLF overvoltage: $\Delta V \approx 0$

- The overall overvoltage should consider interferences between spectral components
- Hypothesis valid for fast edges:

$$t_r \approx 0$$
, ie. $\frac{1}{\pi t_r} > f_{res}$

 \Leftrightarrow edge fast enough to stimulate the mode

- Simplified equations: unknown damping
- Worst-case scenario

Model experimental validation

SATIE

Fast edges assumption:

$$\frac{1}{\pi t_r} > f_{res} \Leftrightarrow t_r < 2\sqrt{C_{out} \cdot L_1}$$

Cout	L_1	Related devices	$2\sqrt{C_{out}\cdot L_1}$
100 pF	1 nH	GaN	0,63 ns
1 nF	1 nH	GaN / SiC / Si	2 ns
1 nF	10 nH	SiC / Si	6,3 ns
10 nF	100 nH	Si	63 ns
			▲

Max t_r so that the asumption holds

- Strong assumption for silicon devices
- Reasonable assumption for low voltage GaN
- Designers therefore need:
 - 50 % V_{ds} -derating
 - Artificially decrease slew-rates
 - Increase Cout

- 1. Introduction
- 2. Oscillation mechanisms in a switching cell
- 3. Influence of the distance between a switching cell and its bypassing network
- 4. Conclusion

Circuit under study (1)

Circuit under study (2)

Measurements & inductance estimation

Measured switching node voltage fitted with:

SATIE

24/06/2019

$$V_{sw}^* = V_{dc} + \sum_{k=1}^{k=3} \hat{V}_k \cdot \sin(\omega_k t + \phi_k) \cdot e^{-t/\tau_k} \qquad \Rightarrow \ L_k = \frac{1}{\omega_k^2 \cdot C_k}$$

Optim. vector: $\beta = [V_{dc}, \hat{V}_k, \omega_k, \phi_k, \tau_k]_k$

Yoann Pascal

Inductance vs. distance

- Low impact of d_x on L_x
- Slow inductance increase: 300 pH/cm
- Predominance of the bulk capacitor ESL on the loop inductance
- Moderate inductance, even for $d_{X7R} = 300 \text{ mm}$

Power network impedance diagram: $(Q_{HS} \text{ on}, Q_{LS} \text{ off, output connected to a Z-analyser})$

Small signal measurements yields similar results

- 1. Introduction
- 2. Oscillation mechanisms in a switching cell
- 3. Influence of the distance between a switching cell and its bypassing network
- 4. Conclusion

Conclusion

Oscillation mechanisms in a switching cell:

- For fast enough devices, 2 mechanisms are at stakes:
 - Voltage-step induced overvoltage: $\hat{V} = V_{bus}$
 - Curent-step induced overvoltage: $\hat{V} = I_{ld} \cdot Z_c$, for each loop

regardless of the parasitic inductances ⇒ minimise parasitic inductances

Influence of the distance between a switching cell and its bypassing network:

- Low impact of the distance on the inductance thanks to:
 - Simple but effective layout (edge-coupled micro-strip)
 - Bottom side copper plane
 - Thin (400μm) subtrate

Given the layout under study:

- Moderate inductance, even at high distances (11 nH @30 cm)
- Degree of liberty on the components positionning:
 - Improved performances
 - Simplified cooling & mechanical design/layout
 - Component sharing: heatsink, bypass capacitors

24/06/2019

Yoann Pascal

Study of the Impedance of the Bypassing Network of a Switching Cell – Influence of the Positioning of the Decoupling Capacitors

Yoann Pascal, Mickaël Petit, Denis Labrousse, François Costa Laboratory SATIE, Paris, France

This work was supported by a grant overseen by the French National Research Agency (ANR-15-CE05-0010) – project HIT-TEMS

24/06/2019