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Approximation formula 

An objective of the Phase II studies sponsored by PSMA at Dartmouth was to find a 

“Steinmetz-like” equation for core losses in magnetic cores using square wave excitation 

and “electrical terms,” volts and time.  The following formula provides a reasonably 

accurate approximation of the core losses of one core: 
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Where 

 Pc is the core loss, in Watts 

 The excitation is a square wave of pulse width T µs and amplitude V volts. 

 The parameters k, α, β and δ are constants (but not the Steinmetz 

constants). 

 Vb is the baseline voltage 

 Tb is the beak- point time in seconds. 

The graph below is the Herbert curves for core loss for a Magnetics Inc. F-42206-TC 

core with five turns.  Because the data were taken for the specific core and winding as a 

component, the core loss is read directly in Watts on the vertical axis.  The horizontal 

axis is the pulse width T of the square wave and the lines are the test excitation voltages 

V applied at the terminal.  (The curves can be expressed as V/turn by dividing V by 5.) 

The points are data taken during the Phase III core loss study, sponsored by PSMA at 

Dartmouth, specifically test runs mi12-2-001 through mi12-2-045.  The red lines are 

curves connecting the data points, and the green lines are the approximation given by 

solving the equation above. 

Because T is defined as the pulse-width, 1 µs represents a 500 kHz square wave.  The 

curve fits are quite good until just before saturation (the upper right extreme of each 

curve).  It is likely that a factor could be added to account for impending saturation if it 

were needed, as it is consistent, curve to curve. 



For the F-42206-TC core, the constants are” 

 k = 0.002 

 δ = –0.65 

 α = 1 

 β = 2.5 

 Vb = 1.25, the voltage of the lowest curve 

 Tb = 5.2 µs, the break point (intersection of the asymptotes) of the lowest curve. 

 



Derivation of the parameters 

 

The constant δ = –0.65 is the slope of the asymptote of the curve on the left in the 

example above. 

The constant β = 2.5 is derived from the slope of the asymptote of the curve on the right 

by subtracting δ = –0.65.  That is, 1.85 – (–0.65)  = 2.5 

The constant Tb is the intersect of the asymptotes, 5.2 µs. 

The constant Vb  is the voltage of the lowest curve, 1.25 V. 

The constant k is calculated by solving the equation for a known point.  From the data 

from the test run mi12-2-001, the core loss is 0.00324 W.  We do not yet know the 



constant α, but since we are working with the lowest curve, V = 1.25, and V/Vb = 1, so 

the exponent in unimportant.  Let α = 1 for now. 
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The constant α can then be solved using a different point having a different voltage.  In 

actuality, I derived the equation in SPICE and adjusted the parameters until there was a 

good fit.  It is hard to get the constant  δ = –0.65 right from the graph, as the asymptote is 

hard to visualize and graph, but it was quite easy to zero in on it in SPICE. 

Note, this is NOT a SPICE model to be used for circuit modeling.  However, SPICE is 

very useful for solving equations expressed in behavioral voltage or current sources and 

for plotting the results.  Actual data can be imported easily for comparison. 

The Appendix shows some of the intuitive steps used in the derivation. 



Appendix 

Conductance curves 

The first step was to use the data for the Herbert curve above, but divide through by the 

voltage squared, resulting in the curves below. 

 

The curves are loosely defined as “Conductance curves,” because they were derived from 

the following reasoning. 
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The idea was to write an equation for the resistance as a function of frequency, a familiar 

operation from feedback theory.  Because conductance fell out of the first operation, 

dividing the core loss P through by V2, I left it that way.  Also, the curves were in the 

form of Herbert curves with the x-axis being T, not frequency, that was also left that way. 

Note that the intercept of the first asymptote and T=1 µs gives a direct reading of the 

constant k = 0.002. 



CAD Doodles 

Below are some curve families that I called “CAD doodles.”  The upper left is the 

conductance curves above as first imported into CAD.  The drooping curves are from the 

expand data, and the magenta curve is exploring the spacing of the voltage curves. 

On a log-log plot, there are some interesting relationships.  Reciprocals are mirror 

images, so the lower left curves are the resistance equivalent, and the lower right curves 

are resistance with increasing frequency as the x-axis. 

 

The curves on the upper right showed that the curves nest fairly well, leading to an 

expectation that a conductance curve for one voltage can be scaled to other voltages. 



SPICE model 

NOTE:  This is NOT a SPICE model to be used for circuit modeling.  However, SPICE is 

very useful for solving equations expressed in behavioral voltage or current sources and 

for plotting the results.  Actual data can be imported easily for comparison. 

Since I was working with the conductance curves, the starting point was: 
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This was used to get the shape of the graph, using the lowest (1.25 V) curve.  Then a 

voltage relationship was proposed 
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In SPICE, the expression for the conductance Gc can be written as  

Gc = 0.002*v(fT)^(-0.65)*((1+((v(It)/1.25)^1)*(v(fT)/5.2)^2.5)) 

Once we have a solution for Gc, core loss Pc is just the conductance Gc times the voltage 

squared 

Pc = v(Gc) * v(fT)^2 



 

In SPICE, the function “time” is just what it seems, so in a behavioral model, “time” 

gives a voltage ramp incrementing with time.   Taking the “frac” of time gives a repeated 

time ramps resetting at each second increment.  Multiplying the time by 10,000  before 

taking the fractional part gives a repeating ramp of 100 µs duration, and multiplying the 

frac expression by 100 gives a time reference fT where T ramps from 0 to 100 µs, then 

repeats. 

By the same logic, taking the “int” of time gives steps incrementing by 1 each second.  

Multiplying by 10,000 before taking the integer gives steps at 100 µs increments.  

Dividing by 5, the steps become increments of 0.2.   By using that expression as the 

exponent of 10, the steps become logarithmic.  Initially, the result is 0, and 100 = 1.  

Multiplying by 1.25, the first step is 1.25 V, and the output increments in the correct 

sequence to match the voltages used in the data, 1.25; 1.9; 3.14, 4.97; 7.99; and 12.5. 

The result can be graphed using the SPICE oscillograph function, with v(fT) as the x-axis 

and Go as the Y a-axis.  Use the log-log plot.  The graph can then be copied into CAD.  

With careful scaling, the curves can be fitted to the data as shown above. 

The exponent of the voltage function, α, gives a good fit when α = 1, so maybe the 

exponent is not necessary.  With just one set of data processed, it seems prudent to leave 

it as a constant to be determined. 


