Table of Contents

AT&S at a Glance

ECP® - The Embedding Technology

Applications
AT&S – A WORLD LEADER IN HIGH-TECH PCB & IC SUBSTRATES

- High-end interconnect solutions for Mobile Devices, Automotive, Industrial, Medical Applications and Semiconductor Industry
- Continuously outperforming market growth
- #1 manufacturer in Europe
- €991.8m revenue in FY 2017/18
- Cost-competitive production footprint with 6 plants in Europe and Asia

#3 in high-end technology worldwide

10,039 employees

GLOBAL FOOTPRINT ENSURES PROXIMITY TO SUPPLY CHAIN & COST EFFICIENCY

Staff, Average, FTE, Q1-3 2017/18, 73 employees in other locations
MARKET SEGMENTS & PRODUCT APPLICATIONS SERVED BY AT&S

Computer, Communication, Consumer
Smartphones, Tablets, Wearables, Ultrabooks, Solid State Drives, Microserver

IC substrates
High Performance Computer, Microserver

Automotive
Advanced Driver Assistance Systems, Emergency-Call, X2X Communication

Industrial
M2M Communication, Robots, Industrial Computer, X2X Communication

Medical
Patient Monitoring, Hearing Aids, Pacemaker, Neurostimulation, Drug Delivery, Prosthesis

Segment Mobile Devices & Substrates

Segment Automotive, Industrial, Medical

HDI: high density interconnect, meaning laser-drilled connections (microvias). HDI is first step towards miniaturization. AT&S can produce 4-layer laser PCBs up to 6-n-6 HDI multi layer PCBs.

IMS: insulated metal substrate. Primary function: heat dissipation for use mainly with LEDs and power components.

Further technological enhancement to HDI microvia: All electrical connections in HDI any-layer boards consist of laser-drilled microvias. Advantage: further miniaturization, and higher performance and reliability. AT&S produces HDI any-layer in 4 to 12 layers.

Production site
Shanghai, Leoben, Nanjiangud, Fehring

Applications
Smartphones, Tablets, Notebooks

Used in all electronic applications including automotive (navigation, infotainment and driver assistance systems)
Flexible printed circuit boards
- Used to replace wiring and connectors, allowing for connections and geometries that are not possible with rigid printed circuit boards.

Semi-flexible printed circuit boards
- More limited bend radius than flexible printed circuit boards. The use of a standard thin laminate makes them a cost-effective alternative.

Rigid-flex printed circuit boards
- Combine the advantages of flexible and rigid printed circuit boards, yielding benefits for signal transmission, size and stability.

Flexible printed circuit boards on aluminum
- Used when installing LEDs in car headlights, for example, where the printed circuit board is bonded to an aluminum heat sink to which the LEDs are then attached.

Insulated Metal Substrate PCB
- Thick metal substrate PCB used for heat dissipation for LED applications or power components which generate a lot of heat.

Production site
- Ansan, Fehring
- Ansan
- Ansan
- Fehring

Applications
- Nearly all areas of electronics, including measuring devices and medical applications
- Automotive applications
- Industrial electronics, such as production machines and industrial robots
- Lighting, automotive, building lighting
- Lighting, automotive, industrial power applications

Table of Contents

- **AT&S at a Glance**

- **ECP® - The Embedding Technology**

- **Applications**
What is ECP®?
AT&S ECP® - Embedded Component Packaging

ECP® (Embedded Component Packaging) uses the free space in an organic, laminate substrate (Printed Circuit Board) for active and/or passive components. Components are integrated in the core of the PCB and connected by copper plated micro vias.

Key Facts
Possibilities and requirements for an embedding project

- Active and/or passive components
- Copper surface on IO’s
- Component (body) thickness 60µm - 300µm (min/max values)
- Laser drilled micro vias
- Electrolytic plated copper
- HDI PCB processes
- PCB material and processes
- Various combination of stack-ups possible
- Details on next slide
Why ECP®?

Unique selling propositions	... in detail
Miniaturization | • Footprint reduction
 • Higher component integration (additional assembly layer)
Electrical performance | • Improved signal performance (higher data rates)
 • Reduction of parasitic effects
Mechanical performance | • Higher durability and reliability through copper-to-copper connections (copper filled micro vias)
 • Package enables protective enclosure
 • High drop, shock and vibration tolerance
Thermal management | • Improved heat dissipation through direct copper connection
 • Improved heat dissipation FR4 versus air (compared to SMD)
Additional functions | • EMV shielding (partial or full shielding of a package)
 • Package is the housing → no additional molding required
ECP is supporting the trend towards modularization | • Customization of footprint and module versions can be done due to digital imaging - no separate tooling necessary (e.g. QFN)
Anti-Tamper and Security | • Hidden electronics preventing reverse engineering and counterfeiting

ECP®: Embedded Component Packaging
Produced volumes since 2011

<table>
<thead>
<tr>
<th>Packages</th>
<th>Modules</th>
<th>Boards</th>
</tr>
</thead>
<tbody>
<tr>
<td># of shipped units</td>
<td>> 247 million</td>
<td>> 9 million</td>
</tr>
<tr>
<td># of shipped m² (gross)</td>
<td>> 3.900</td>
<td>> 700</td>
</tr>
<tr>
<td># of HVM projects</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td># of prototypes</td>
<td>64</td>
<td>114</td>
</tr>
<tr>
<td># of assembled components</td>
<td>> 247 million</td>
<td>> 15 million</td>
</tr>
</tbody>
</table>

Mainly low voltage applications (<20V)
Process Flow Center Core ECP®

Main process steps

- Core preparation
- Cavity cutting
- Carrier lamination
- Component assembly

- Soft lamination
- Carrier removal
- Final lamination

- Laser drilling
- Mechanical drilling
- Plating and structuring
- Testing

Possible Architectures

Embedded core combined with standard PCB technology

- Finish as 2 layer module
- Sequential 4, 6, 8, 10 layer build up
- Multiple core build up
Table of Contents

- AT&S at a Glance
- ECP® - The Embedding Technology
- Applications

ECP® Application Examples

<table>
<thead>
<tr>
<th>Application</th>
<th>GaN based multilevel inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package size / Type</td>
<td>10 x 10 mm Single-die board</td>
</tr>
<tr>
<td>Substrate Construction/Thickness</td>
<td>2 layer (double side connection) 350 um</td>
</tr>
<tr>
<td># of embedded components</td>
<td>1</td>
</tr>
<tr>
<td>Voltage</td>
<td>150V</td>
</tr>
</tbody>
</table>

Paper presentation at CIPS 2018
EmPower
Integration of Electric Power Components for Electromobility
EmPower: Application fields

› BT microelectronic:
 Power discrete package on base of D²PAK
 → power schottky rectifier

› Continental Transmission
 Pedelec → BLDC motor control with power module

› Continental Hybrid & Electric Vehicle:
 DC/DC inverter

Source: AT&S

EmPower

Miniaturization x,y,z – 500W Demonstrator

• Size reduction in x,y of 50% in power area
• z – dimension of Power core around 350µm

Source: AT&S
Switching performance – 500W Demonstrator

- close positioning of single components results in a minimization of inductance of the switching cell
- reduction of the overvoltage indicates less switching losses and finally faster switching is possible

Ferrite embedding for Power Converter Applications

Toroidal Inductor

N = 16
R1 = 1.5 mm
R2 = 5.25 mm
h = 300 µm

Magnetic field lines distribution at 2.5 A

- No air gap
- Air gap 500µm
- Air gap 350µm

European funded GaNonCMOS project

The combined embedding of magnetic material, active and passive components allows the production of highly integrated modules exploiting all possible advantages
This presentation is provided by AT & S Austria Technologie & Systemtechnik Aktiengesellschaft, having its headquarter at Fabrikgasse 13, 8700 Leoben, Austria ("AT&S"), and the contents are proprietary to AT&S and for information only.

AT&S does not provide any representations or warranties with regard to this presentation or for the correctness and completeness of the statements contained therein, and no reliance may be placed for any purpose whatsoever on the information contained in this presentation, which has not been independently verified. You are expressly cautioned not to place undue reliance on this information.

This presentation may contain forward-looking statements which were made on the basis of the information available at the time of preparation and on management's expectations and assumptions. However, such statements are by their very nature subject to known and unknown risks and uncertainties. As a result, actual developments, results, performance or events may vary significantly from the statements contained explicitly or implicitly herein.

Neither AT&S, nor any affiliated company, or any of their directors, officers, employees, advisors or agents accept any responsibility or liability (for negligence or otherwise) for any loss whatsoever out of the use of or otherwise in connection with this presentation. AT&S undertakes no obligation to update or revise any forward-looking statements, whether as a result of changed assumptions or expectations, new information or future events.

This presentation does not constitute a recommendation, an offer or invitation, or solicitation of an offer, to subscribe for or purchase any securities, and neither this presentation nor anything contained herein shall form the basis of any contract or commitment whatsoever. This presentation does not constitute any financial analysis or financial research and may not be construed to be or form part of a prospectus. This presentation is not directed at, or intended for distribution to or use by, any person or entity that is a citizen or resident or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction.