Improvement of Ag sintering Quality on Cu surface at Hydrogen atmosphere

Tetsu Takemasa, Osaka University, Osaka, Japan
Senju Metal Industry Co., Ltd., Tokyo, Japan
Jinting Jiu, Senju Metal Industry Co., Ltd.
Junko Seino, Senju Metal Industry Co., Ltd.
Minoru Ueshima Daicel Corporation, Osaka, Japan
Katsuaki Suganuma, ISIR Osaka University, Osaka, Japan

✓ Introduction
- Wide Band Gap power devices
- Die attach materials for WBG devices
- Micron Ag sintering paste

✓ Experimental procedure

✓ Results
- Ag sintering to bare Cu surface
- Two-Step sintering profile
- Shear strength of joints

✓ Summary
Wide-Band Gap (WBG) Power Devices

- Reduced power loss
- Higher voltages & frequency
- Higher operation temperature
- Reduced size and weight

Die Attach Materials for WBG Devices

- High-temperature solder
- Transient liquid phase (TLP) bonding
 - Cu (high melting temp)
 - Sn (low melting temp)
 - Cu$_5$Sn IMC (677 °C)

- Metal sintering structure
 - High-temperature operation
 - High thermal conductivity
 - High electrical conductivity
Micron Ag Sintering Paste

Advantage
• Pressure-less sintering is available

Disadvantage
• Shear strength to bare Cu surface is not high

Experimental Procedure

Die and substrate
Si die: Pt-Ag sputtered, 3 × 3 × 0.5 mm
Cu substrate: Bare and Ni-Ag plated, 50 × 50 × 0.5 mm

Ag paste apply
Stencil
Printing method Manual printing

<table>
<thead>
<tr>
<th>No.</th>
<th>Substrate</th>
<th>Sintering steps</th>
<th>Sintering atmosphere</th>
<th>Sintering temperature (°C)</th>
<th>Sintering time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plated Ag</td>
<td>1 step</td>
<td>Air</td>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>Air</td>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>Air</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>N₂</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1st Air</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd H₂</td>
<td>350</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1st Air</td>
<td>250</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd H₂</td>
<td>350</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1st Air</td>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd H₂</td>
<td>350</td>
<td>25</td>
</tr>
</tbody>
</table>
Ag Sintering to Bare Cu Surface

<table>
<thead>
<tr>
<th>No.</th>
<th>Substrate</th>
<th>Sintering steps</th>
<th>Sintering atmosphere</th>
<th>Sintering temperature (°C)</th>
<th>Sintering time (min.)</th>
<th>Shear Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plated Ag</td>
<td>1 step</td>
<td>Air</td>
<td>250</td>
<td>30</td>
<td>> 40</td>
</tr>
<tr>
<td>2</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>Air</td>
<td>250</td>
<td>30</td>
<td>< 10</td>
</tr>
<tr>
<td>3</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>Air</td>
<td>350</td>
<td>30</td>
<td>14.1</td>
</tr>
<tr>
<td>4</td>
<td>Bare Cu</td>
<td>1 step</td>
<td>N₂</td>
<td>350</td>
<td>30</td>
<td>< 10</td>
</tr>
</tbody>
</table>

- Micron Ag can be sintered onto a Cu substrate
- Breakdown area is oxidized Cu layer
- Oxide is necessary for micron Ag sintering

Two-step Sintering Profile

1st step
To start micron Ag sintering in air.

2nd step
To reduce oxidized Cu in H₂.
Optimization of Two-step Sintering

<table>
<thead>
<tr>
<th>No.</th>
<th>Substrate</th>
<th>Sintering steps</th>
<th>Sintering atmosphere</th>
<th>Sintering temperature (ºC)</th>
<th>Sintering time (min.)</th>
<th>Shear Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1<sup>st</sup> Air</td>
<td>250</td>
<td>15</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2<sup>nd</sup> H<sub>2</sub></td>
<td>350</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1<sup>st</sup> Air</td>
<td>250</td>
<td>5</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2<sup>nd</sup> H<sub>2</sub></td>
<td>350</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bare Cu</td>
<td>2 steps</td>
<td>1<sup>st</sup> Air</td>
<td>180</td>
<td>5</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2<sup>nd</sup> H<sub>2</sub></td>
<td>350</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

- Oxidized Cu was reduced by H₂
- The shear strength was improved by two-step sintering

Share Strength of the Joint

Die shear tester: Dage 4000
Shear head speed: 100 μm /s
Shear head height: 100 μm

- Shear strength over 20 MPa has been achieved by the optimized Two-step sintering profile
Summary

- The heating in air is necessary to start Ag particles sintering
- Cu oxidation decreases bonding strength
- Two-step sintering profile combining sintering in air and reduction in hydrogen was proposed
- Shear strength over 20 MPa has been achieved by Two-step sintering profile with micron Ag paste