

Content

- About PINK GmbH Thermosysteme
- PINK Sintering Systems
- Sintering Motivation and Challenges
 - Motivation for sintering
 - Critical aspects
- Rate Controlled Sintering
 - Stages of Sintering
 - Concept of Rate Controlled Sintering
 - Test Results
- Summery

About PINK

Facts about PINK GmbH Thermosysteme

- Founded by Friedrich Pink in 1979
- Managed by his daughter Andrea Althaus
- Located in Wertheim am Main (near Frankfurt)
- Currently about 150 employees
- Four fields of competence:
 - Soldering Technology
 - Sintering Technology
 - Drying Technology
 - Plasma Technology
- Affiliated company: PINK GmbH Vakuumtechnik (since 1986)
- International subsidiary: PINK Japan K.K. (since 2015)

PINK North America (since 2018)

Application at PINK

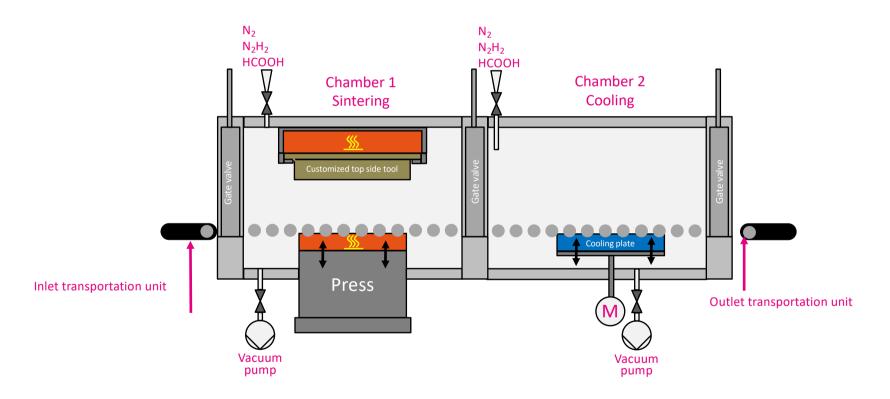
The core mission of customer application at Pink is caring about technical <u>customer needs and questions</u> with regards to <u>soldering and sintering of power semiconductor packages</u>. This includes training of customers, offering seminars as well as general and customer specific process development.

Range of Services

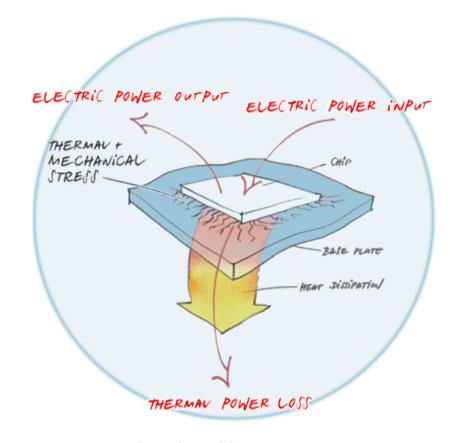
- Customer demonstrations
- Feasibility studies
- Process development and support
- Process training
- Research- and development work

Figure 1: New application & training center, opened summer 2018.

PINK Sintering Systems


PINK Sintering Systems

- Pressing force: up to 2.000 kN (200 tons)
- Top and bottom side stamp can be pre-heated up to 350 °C
- Exchangeable press tools
- Continuous high resolution force- and distance measurements enable closed-loop control
- Able to adapt press position to compensate for smallest drifts in product geometry, in order to stabilize applied pressure , e.g.
 - Height rise during heating through thermal expansion
 - Height loss during sinter layer compression
- Vacuum Chamber
 - \rightarrow Exact control of gas atmosphere (N₂, N₂/O₂, N₂/H₂, HCOOH)



Sintering system SIN200: Operating principle

Sintering – Motivation and Challenges

Motivation for Sintering

Material properties	Ag -sinter	SnAg3.5 solder	
Melting point [°C]	961	221	High
Thermal conductivity [W/m*K]	250 ¹	60 0 0	Lower
Electrical conductivity [10 ⁶ S/m]	\$ e	8	Lower
CTE [10 ⁻⁶ /K]	19	28	
¹ sourd : USCL VI rechnologie-Forun ² exact value depending on silver flak		LONE	(=Þ ,h

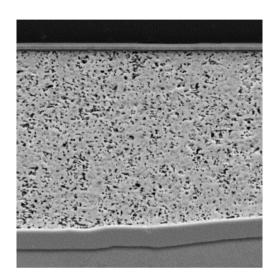
go temperati perature capability of silver sintering due to higher melting point

of silver sintering due to b

o better electrical conductivity

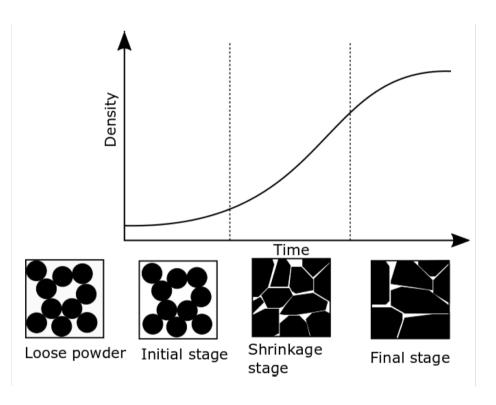
ch of Ag to Si and therefore lower thermo-mechanical stress

Critical Aspects


- Sintering process causes higher costs compared to soft soldering, because
 - Sinter pastes are more expensive then soldering pastes
 - New equipment is necessary: drying, pick & place, sintering press, quality inspection
 - Different process know how needed in design and manufacturing
 - New power module design + qualification
- Considering the power electronic system will gain cost reduction
 - Reduction of semiconductor area at same power (amps per Euro)
 - Increase of maximum junction-temperature
 - Reduction of cooling effort, design space and weight
 - Increase of lifetime and reliability
 - Reliable manufacturing process supplying high yield and quality

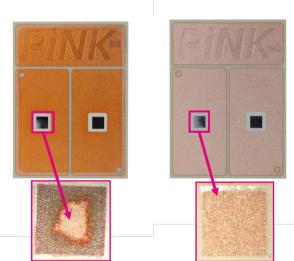
Critical Aspects

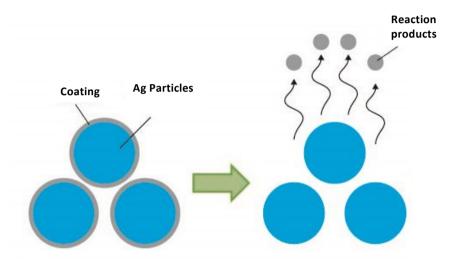
- Sintering require oxide free metal interfaces
 - Sinter materials are porous after processing
 - Removal of residues after processing inside of pores not possible
 - → Sinter materials are free of resins and activators
 - No removal of oxides from surface by sinter materials
 - Clean and oxide free surfaces are required
 - NiAu, Ag or clean Cu surface finishes to be used on DCB



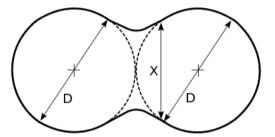
Use of vacuum chamber for sintering processes

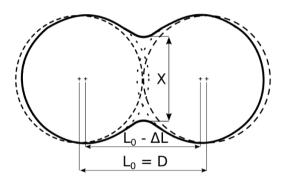
- Sintering under configurable oxygen level reduces surface oxidization
- Application of reductive atmosphere after sintering removes oxide layers on substrate and chip surface
 - No precious metal surface finish needed
 - No additional product cleaning necessary
 - Bare copper DBCs save material costs
 - Copper layer on top side of chip and substrate allow direct copper wire bonding
- Contamination with sulfur can be prevented



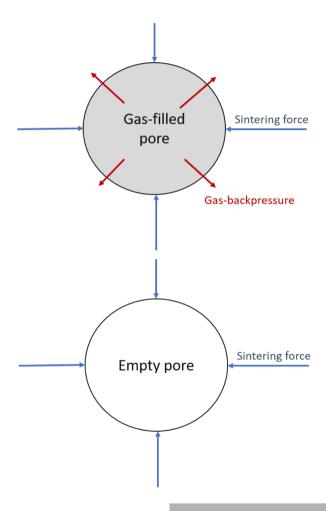


Rate Controlled Sintering

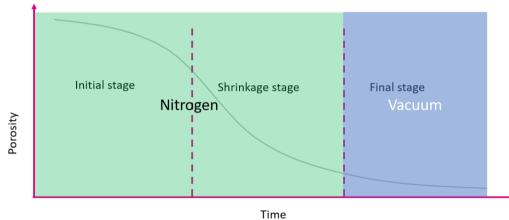

- Burning of coating on powder surface
 - Oxygen required to remove coating and start sintering reaction
 - Tight control of O₂ level required, if non precious metals are used as substrate surface

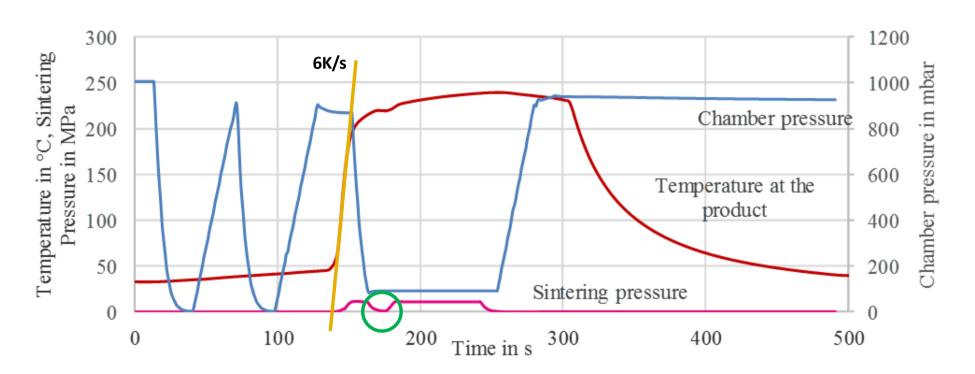


- Initial stage
 - Low temperature and pressure → low energy phase
 - Surface diffusion & evaporation-condensation mechanism
 - → no densification
 - → most processes optimized to shorten initial stage



- Shrinkage stage
 - Increase of temperature and pressure during the processing
 - grain boundary and volume diffusion resulting in approximation of particles
 - → reduction of number and size of pores
 - porous network collapsing into single closed pores
 - → densification of sinter layer


- Final stage
 - reduction of grain boundaries
 - Back pressure inside gas filled, closed pores in case of air or protective gas sintering
 - → Low gas pressure processes to reduce back pressure


Concept of Rate Controlled Sintering (RCS)

- Control of critical parameter during the different sintering stages
 - Temperature
 - Time
 - Pressure
 - Atmosphere
- Controlled adjustment of material properties of sinter layer
- Minimize variation of properties of sinter layer

RCS Profile

Test Results

- As test criteria die shear value was used to compare sintering results of different processes
 - Materials used
 - Heraeus Cu DCBs
 - 1x1mm dies, Ag backside metallization
 - Heraeus Ag sinter paste LTS 338
 - Die shear value increases by 15% comparing sintering in air and RCS
 - Reduction of standard deviation by 40% comparing sintering in air and RCS
- Improvement based on
 - Different sintering atmosphere
 - Lower level of 02 support bonding (shear value of sintering in air vs. Sintering in N2/RCS)
 - Reduction of back pressure during sintering by use of vacuum (standard deviation of shear value sintering in Air vs. sintering in vacuum/RCS)

Summery

- RCS allowing better control of sintering process
 - Use of vacuum chamber allowing required control of sintering atmosphere
 - Use of controlled atmosphere to reach
 - higher shear values
 - lower standard deviation
 - Design of properties sinter layer generally possible
 - Adjustment of porosity to adjust e.g. (initial) Youngs modulus according to package design
 - Shorten of sintering time based on density requirement / die shear requirement of sinter layer
 - RCS increases the robustness of sintering process → decrease of process costs / quality costs
- Further improvement of process parameter possible
 - Keep sinter pressure during vacuuming of process chamber
 - Increase the slope of heating to reduce effect of surface diffusion

Sintering Technology

