Pulse Testing of Magnetic Cores and Inductors

JC Sun
Bs&T Frankfurt am Main GmbH
JC and his...

- physicist & engineer
- make and design ferrite 3Cx and 3Fx
- sales amorphous metals 2605/2714/2705
- marketing nanocrystalline 500F components
- Bs & T Frankfurt am Main GmbH

www.powerlosstester.de
• Introduction Bs&T
• Typical value and Limit value of inductor
• Demonstration of pulse testing
 example 1: temperature dependence of saturation current
 example 2: life demo 3 phase delta inductor D9B
• Take home message
Bs & T Analyzer

Sinusoidal Magnetization

- High excitation
- IEC 62044-3
- Loss, μ_a driven by B mode
- B_{peak} loop driven by H mode
- DC superposition

Pulse Magnetization

- Low excitation
- IEC 62044-2
- Fast transit of magnetic state
- dB/dt
- IEC 60367-1 Annex G (393 IEEE)

BsT-Pro

- Loss map (f, B, T, H_{DC})
- μ_{rev} (f, B, T, H_{DC})
- Major, and biased minor loop

BsT-Pulse

- Differential L and amplitude L,
- Energetic L, power loss i.e. Q factor
BsT Pro

H_{DC} oven

Diagram showing the setup with:
- Function Generator
- Power Amplifier
- Transformer
- Current Sensor
- DC Power
- Oscilloscope
- Computer
- DUT

Equipment listed:
- Oscilloscope
- Power Amplifier
- DUT
- Function Generator
- Transformer
- Current Sensor
- DC Power
- Oscilloscope
- Computer
- DUT
BsT-Pulse

Pulse Magnetization

fast transit of magnetic state
dB/dt

differential and amplitude L
energetic L, power loss

pulse energy \(\sim 200 \text{ J} \) with discharge voltage till 1000 V \((>3000A_p)\)

bipolar pulse magnetization with full reversal current
Coil (Core&Material) is Nonlinear and shows Saturation

Piecewise linearization is only possible, as long as assignment of magnetization inductance and current is unique given

\[
L_s(i) = \frac{N \cdot \Phi}{i} = \frac{\Psi}{i}
\]

IEC 60076-6

Differential L

\[
L_d(i) = \frac{d(N \cdot \Phi)}{di} = \frac{d\Psi}{di}
\]

\[
v(t) = L_d(i) \cdot \frac{di}{dt} = \frac{d\Psi}{di} \cdot \frac{di}{dt} = \frac{d\Psi}{dt} = \frac{d[i \cdot L_s(i)]}{dt}
\]

\[
\frac{d[i \cdot L_s(i)]}{dt} = L_s(i) \cdot \frac{di}{dt} + i \cdot \frac{dL_s(i)}{dt}
\]

Amplitude L

\[
L_s(i) = \frac{1}{i} \int_0^i L_s(i') \, di'
\]

Energetic L

\[
L_e(i) = \frac{2}{i^2} \int_0^i i \cdot L_s(i') \, di'
\]

Alex van den Bossche

Bs&T Frankfurt am Main GmbH
Inductance analysis to characterize saturation

![Graph showing inductance analysis]

![Graph showing B-H relation]

Bs&T Frankfurt am Main GmbH
Typical value and Limit value

Inductor

<table>
<thead>
<tr>
<th>Document classification</th>
<th>Typical value</th>
<th>Limit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue*</td>
<td>THD$_F$, Z, P$_V$</td>
<td></td>
</tr>
<tr>
<td>Material table</td>
<td>all other properties than those</td>
<td></td>
</tr>
<tr>
<td></td>
<td>described in “Limit value”.</td>
<td></td>
</tr>
<tr>
<td>Material curve</td>
<td>all properties</td>
<td></td>
</tr>
<tr>
<td>(Shaped) Core table</td>
<td>A$_L$, THD$_F$, Z, P$_V$</td>
<td></td>
</tr>
</tbody>
</table>

Problem:
1. no differentiation between L_{diff}, L_{amp} and $L_{\text{energetic}}$
2. Instantaneous large current causes heat dissipation

Solution: BsT-Pulse

- Non-linearity of inductance value and Q factor

IEC 60076-6 & IEC 62024 NO CLEAR INSTRUCTION TO SPECIFY INDUCTANCE

IEC 60401
Measuring principle with example

2x HS1016

<table>
<thead>
<tr>
<th>N</th>
<th>Le [mm]</th>
<th>Ae [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>242,7</td>
<td>704,4</td>
</tr>
</tbody>
</table>

* This project received funding support from EU SME Horizon 2020
Damped oscillation with voltage and current decay

micro second ~ milli second heat dissipation neglected
Correlation magnetic component, core and material

Material
Geometry data
Coil data

Component

Core

<table>
<thead>
<tr>
<th>N</th>
<th>Le [mm]</th>
<th>Ae [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>242,7</td>
<td>704,4</td>
</tr>
</tbody>
</table>

Material
Demagnetization curve
Assignments of magnetization inductance vs. current
Example 1: Temperature dependence of saturation current

Demagnetization factor ~ 0.38

Open magnetic circuit

D9B vs. P4 (~N87)

incremental inductance (μH)

I [A]

25°C

120°C
Example 2: Life demo: pulsation of 3 phase delta inductor

Ferrite material D9B™ 0.6 T escalating (like lego stone)

- 100, 110, 111
 - 1 short circuit
 - 0 open circuit
 - 1 limb to pulse
L_{diff} vs. U_{dt} $100 \sim 220 \, \mu\text{H}$
L measurement 100 LCR 182
$L_{\text{diff}} \text{ vs. } U_{\text{dt}} \sim 160 \, \mu\text{H}$
L measurement 110 LCR 157 µH
L_{diff} vs. $U_{dt} \sim 80 \mu H$
L measurement 1 1 1 LCR 73 µH
Take home message

- **BsT-Pulse** enables precise, robust, reliable and quick inductance analysis, *no* self heating disturbance
- **BsT-Pulse** provides accurate power loss, *no* importance on phase angle error between voltage and current
- **BsT-Pulse** provides characterization of inductor quality factor with $\omega L_{\text{energetic}} / R$
- Linkage of reading material loss map *is over* $L_{\text{diff}} @ \mu_{\text{rev}}$

BsT-Pulse provides limit value for maker and user of magnetic component

granted and supported by H2020, DIN, VDE
Annex 1 measuring data for simulation

BsT-Pro

BsT-Pulse

BsT-Pro

BsT-Pulse

Bs&T Frankfurt am Main GmbH
Annex 2 loss map reading with linkage over μ_{rev} and L_{diff}

Example data log file

<table>
<thead>
<tr>
<th>Temp ($^\circ$C)</th>
<th>Freq (kHz)</th>
<th>TestB (mT)</th>
<th>I_Hdc (A)</th>
<th>μ_{rev}</th>
<th>L_{diff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>20</td>
<td>5.00</td>
<td>24.38</td>
<td>7958</td>
<td>20.69</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>10.00</td>
<td>24.38</td>
<td>7958</td>
<td>20.40</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>5.00</td>
<td>24.38</td>
<td>7958</td>
<td>5.179</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>10.00</td>
<td>24.38</td>
<td>7958</td>
<td>5.112</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>5.00</td>
<td>36.57</td>
<td>11937</td>
<td>1.790</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>10.00</td>
<td>36.57</td>
<td>11937</td>
<td>1.421</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>5.00</td>
<td>36.57</td>
<td>11937</td>
<td>4.456</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>10.00</td>
<td>36.57</td>
<td>11937</td>
<td>3.573</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Vpp_sp (V)</th>
<th>Vpp_Mv</th>
<th>Vrms_Mv</th>
<th>V_CF</th>
<th>V_DC</th>
<th>Ipp_Mv (A)</th>
<th>Irms_Mv</th>
<th>I_CF</th>
<th>I_DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,474</td>
<td>6,538</td>
<td>2,306</td>
<td>1,427</td>
<td>0.003</td>
<td>2,988</td>
<td>1,115</td>
<td>1,340</td>
<td>-0.010</td>
</tr>
<tr>
<td>12,948</td>
<td>12,975</td>
<td>4,577</td>
<td>1,418</td>
<td>-0.048</td>
<td>6,375</td>
<td>2,245</td>
<td>1,420</td>
<td>-0.035</td>
</tr>
<tr>
<td>16,185</td>
<td>16,213</td>
<td>5,715</td>
<td>1,419</td>
<td>-0.046</td>
<td>2,988</td>
<td>1,105</td>
<td>1,352</td>
<td>-0.010</td>
</tr>
<tr>
<td>32,371</td>
<td>32,479</td>
<td>11,451</td>
<td>1,418</td>
<td>-0.051</td>
<td>5,362</td>
<td>2,242</td>
<td>1,419</td>
<td>-0.039</td>
</tr>
<tr>
<td>6,474</td>
<td>6,503</td>
<td>2,292</td>
<td>1,419</td>
<td>0.004</td>
<td>2,988</td>
<td>1,280</td>
<td>1,167</td>
<td>-0.005</td>
</tr>
<tr>
<td>12,948</td>
<td>12,935</td>
<td>4,559</td>
<td>1,418</td>
<td>-0.044</td>
<td>8,211</td>
<td>3,209</td>
<td>1,279</td>
<td>-0.039</td>
</tr>
<tr>
<td>16,185</td>
<td>16,138</td>
<td>5,691</td>
<td>1,418</td>
<td>-0.050</td>
<td>2,988</td>
<td>1,277</td>
<td>1,170</td>
<td>-0.005</td>
</tr>
<tr>
<td>32,371</td>
<td>32,536</td>
<td>11,458</td>
<td>1,420</td>
<td>-0.048</td>
<td>8,171</td>
<td>3,206</td>
<td>1,274</td>
<td>-0.021</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>P_{cal} (mW)</th>
<th>$P_{\text{corrected}}$</th>
<th>P_{final}</th>
<th>P_{rev}</th>
<th>P_{rev}</th>
<th>P_{rev}</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,40</td>
<td>30,69</td>
<td>30,11</td>
<td>0.57</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>95,67</td>
<td>128,64</td>
<td>128,68</td>
<td>2.44</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>27,32</td>
<td>48,95</td>
<td>49,08</td>
<td>0.93</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td>189,47</td>
<td>277,15</td>
<td>276,67</td>
<td>5.24</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>15,37</td>
<td>24,72</td>
<td>24,63</td>
<td>0.47</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>84,93</td>
<td>132,14</td>
<td>133,44</td>
<td>2.53</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>9,20</td>
<td>33,79</td>
<td>34,25</td>
<td>0.65</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>155,45</td>
<td>281,27</td>
<td>280,38</td>
<td>5.31</td>
<td>20.1</td>
<td></td>
</tr>
</tbody>
</table>

Loss Map

- μ_{rev}: \[f, B, T, H_{DC} \]
- L_{diff}