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Why Die Attach/Wire Bonds/Solder Joints?

Bond Bond Bondwire
o Interconnects tend to be the . T .
primary driver for reliability . [
Base Plate Solder l I} Sibatats
of power modules
o Influenced by the robustness Heatink

of today’s power devices
(IGBT and FET, Si/GaN/SiC) and the tendency
to towards conservative design (derating margin)

Active endurance tests of direct-bonded-copper based MOSFET power
modules showed that the aluminum bonds and the die attach are the

most critical design elements regarding product reliability — Robert
Bosch, 2016
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How to Avoid Die Attach, Wire Bond Failures?

o Step 1: Good quality control

o Step 2: Perform reliability prediction using physics of
failure (PoF)
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What is Physics of Failure (PoF)?

o Also known as reliability physics

o Common Definition:

o The process of using modeling
and simulation based on the
fundamentals of physical
science (physics, chemistry,
material science, mechanics,
etc.) to predict reliability and
prevent failures
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Physics of Failure: Modeling and Simulation

o What are we modeling / simulating?

o Reliability (t > 0) = Material Change or Material
Movement

o Fundamental Material Mechanisms
o Diffusion
> Oxidation/Reduction
o Creep

o Fatigue
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Material Movement: Diffusion

o Motion of electrons, atoms, ions, or vacancies through o

material

o Typically driven by a
concentration gradient
(Fick’s Law)
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o Can be driven by other forces (electromotive force, stress)
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Material Movement: Creep

o The tendency of a solid to permanently deform when
subjected to a fixed load

o Corollary: Tendency of a solid to relieve stress when loaded
at a fixed displacement

o Metals: Driven by movement of defects within the

crystalline structure

o Dislocations (edge or screw)
o Grain Boundaries ﬁ%\%ﬁ%éﬁ
hedddd %
b L ir’w
13318
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Material Movement and M&S

o All physics of failure models can be condensed into
answers to three questions

o How large is the stress?

o At what rate is this stress driving material
movement?

o At what time will this material movement induce
failure?
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PoF-Based Reliability Prediction

o Most physics-of-failure (PoF) based models are semi-empirical
o The basic concept is still valid

o Requires calibration

o Calibration testing should be performed over several orders of
magnitudes

o Allows for the derivation of semi-empirical constants, if necessary

o The purpose of PoF is to limit, but not eliminate, the influence of
material and geometric parameters

o E.g., Solder: Testing must be re-performed for each package
family (ball array devices, gullwing, leadless, etc.)
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How to Perform PoF? Stress/Strain/Energy

o One of the key differentiations in PoF techniques is how to
capture the stress/strain/energy within the interconnect

0.5
r L o — O,
e=6 — | —— 20, + —base — “wire | AT
(DJ(D j { e 1—(D/L)}

— ’ Option 2: Analytical Equations

0021291 00538 2 0.191516

Option 1: Finite element model

o Most manufacturers will use Option 1 at some point during the
development process (especially for complex geometries)

o However, Option 2 is preferred for tradeoff analysis and for
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How to Perform PoF? Damage Accumulation

o Lots of discussion about A - g} . !
key damage parameter > = E(QNJ“] + Ef(QNf)C
(stress, strain, elastic, Ao CoffinM
) L asquin offin-Manson
plastic, plasticity, creep, (high-cycle) (low-cycle)
energy)
da _ CAK™ No = Cy x (AW,ve)"?
dN
Paris da ; . !
(high-cycle) IN — C-g X (ﬁ[-'{’m,e) 4
Darveaux
(low-cycle)
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How to Perform PoF? What’s Important?

o One of the most critical aspects of PoF is including primary
parameters and excluding secondary effects

o Can sometimes drive the semi-empirical nature of PoF
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Predicting the Reliability of Die Attach

o Die attach tends to have only one failure mode

o Thermal cycle fatigue due to power cycling

o Frequency of the power cycle can play a very critical role

o |If the power cycle frequency is high enough, the failure site
will shift from the die attach to the wire bond (thermal inertia)

o Key Challenge: Defining failure
o Most die attach configurations do not conduct electricity

o Die attach is primarily a thermal path
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Die Attach Fatigue (Englemaier, 1982)

- (\/Ld * W, )(CTE i — CTE pgc )AT
2h

Ay

Strain range at the die/die attach interface

* h = die thickness e o = coefficient of

« W = die width thermal expansion
L = die length (CTE)
« AT = changein
temperature
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Die Attach Fatigue (Time to Failure)

N =& (Ay)

o Coffin-Mason based low-cycle fatigue damage model

o Tin-based solders (SnPb, SAC305, Sn3.5A¢g, etc.) tend to have
fatigue exponents around 2 to 2.5

o SnPb: ~2; Sn3.5Ag: 2.2; SAC305: ~2.4

o Fatigue exponents for new die attach solders have not yet been
widely validated

o Nanosilver, BiAgX, Sn25Ag10Sb (“J” alloy)
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Nanosilver: Is it Better Than Solder?

o JSintering with nanosilver is challenging (and expensive)

o Requires pressure ::)537‘«5' "’f-..bé.‘

o For large die, post sintering P
stress relief step is often required

o Voiding must be controlled
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Nanosilver: Is it Better Than Solder? (cont.)

o For the most part, the industry agrees nanosilver is more
reliable, but there can be issues

___soldered (Sn96.5Ag3Cu0.5) [
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Nanosilver: Is it Better Than Solder? (cont.)

o Different publications N, cossaons = 0.075- A "
rovide different values for o
: N} ymo-sitver = 0160-AE )

fatigue constants and

©
exponents ©
=
~10 — ! —
)
9]
Author Constant Value Exponent = 8
Q
£ 7
M. Knoerr  1.6E-0O1 Plastic Strain -3.0 8
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Vibration Futigue "’T Sl i i i
m Lifetime under mechanical cycling | P |
is divided into two regimes " A &0
o Low cycle fatigue (LCF) o :
| N
o High cycle fatigue (HCF) ? N
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Reliability: When do Wire Bonds Fail?

o Exposure to elevated temperature

o Intermetallic formation

o Exposure to elevated temperature /humidity

o Corrosion

o Exposure to temperature cycling

o Low cycle fatigue

DfR Solutions
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Reliability at Elevated Temperatures

o Not an issue in aluminum-aluminum wire bond system

o The lack of intermetallic formation and differential diffusion
makes it relatively immune to purple plague

o Prior studies have found little change in resistance after

1000 hours at 300C

o Bigger issue in mixed metal
systems, like gold-aluminum

o Formation of brittle AuAl2
(purple plague) at 350C

o Diffusion of gold into Au:Al, causes
Kirkendall voiding at lower temps

DfR Solutions
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Reliability Prediction (Elevated Temperature)

o Is an absolute reliability prediction of wire bond reliability
at elevated temperature possible?

o Short answer: NO

o Diffusion behavior is very sensitive to bonding temperature,
quality of bond, aluminum alloy, aluminum bond pad
thickness, and encapsulant chemistry

o Low bonding temperature

o Siin Al-Cu bond pad

o Thin bond pad (~1 um)

o Bromide-free flame retardants

o Can change absolute and relative (acceleration factor) time
to failure
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Reliability Prediction — Temperature (cont.)

o For gold-aluminum, prediction is primarily by
extrapolation from test results using Arrhenius and a
conservative activation energy

(0.9 eV)
t. = Aexp AR
KT

o However, there is some question as to the presence of a
minimum temperature

o Periodically reported as 125C for unencapsulated and
85C for encapsulated

o Observed in other systems (tin-copper and whiskers)
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Other Systems (Cu-Al)

o Copper-aluminum forms intermetallics at a much slower
rate HJ Kim, IEEE CPT, 2003
o Most common activation energy of 1.26 — 1.47 eV

o Micron reported 0.63 eV L England, ECTC, 2007

Igtermetallic thickness (pm)

o Molding compound has little effect

7
6 -
5L
Au - Al
4l
3L
2 -
1+ Cu - Al
0 } M
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Intermetallic Penetration - AISi-Cu Bond Intermetallic Penetration - AISi-Au Bond t'/2 (seconds'’2)
(aged 800 hours at 180°C) (aged 200 hours at 200°C) C. Breach, The Great Debate: Copper vs. Gold
Ball Bonding

L Levine, Update on

High Volume Copper Ball Bonding DfR Solutions

O

9000 Virginia Manor Rd Ste 290, Beltsville MD 20705 | 301-474-0607 | www.dfrsolutions.com 26



Ball pull strength (g)

Other Systems (Cu-Al)(cont.)
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Figure 6. Ball Pull Strength after HTS at 200°C

o Cu-Al can show improved performance over Au-Al

o Not to the extent expected based on intermetallic growth

o Different failure mode (gradual vs. sudden)
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Shear Strength at Elev Temp
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o Shear strength of Au and Cu ball bonds on Al pads
o At lower temperatures (<150C) they are similar in strength loss

J. Onuki, M. Koizumi, I. Araki. IEEE Trans. On Comp. Hybrids & Manfg. Tech. 12 (1987) 550 DfR SO]llthIlS 0
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Cu-Al and Elevated Temperature — Concerns

o Different intermetallics form at different temperatures
o Can a 150C/200C test be extrapolated to 85C?

o Fracture mode with pure Cu changed from bulk Cu to interfacial
failure

o Some indications that oxidation of the
wedge bond may be a critical weak

[ ]
point
30.00
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-
£
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4
% 1500 ]
2
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2 500 | —e—aNCuwire
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L
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Wire Bonds and Temperature/Humidity

o Degradation primarily occurs in the gold wire bond /
aluminum bond pad system

o Driven by galvanic corrosion

o Absence of galvanic couple in aluminum/aluminum and
copper/aluminum systems tends to limit corrosive behavior

o Presence of halides, especially chloride, can accelerate
corrosive behavior

o Getters in the molding compound tend to reduce this risk

DfR Solutions
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Wire Bonds and Temperature /Humidity (cont.)

o The mechanism of Au-Al corrosion has been primarily
described by Peck’s Law

o Peck’s Law for Temperature and Humidity
> Empirical study of THB/HAST (85/85, 110/85 & 5-70 VDC)

tye = AJRH " (V) exp(~ E, /KT)

t. = time to failure, A, = material constant

RH = relative humidity, n = empirical constant (2.66)

E, = activation energy (0.7%eV), k = Boltzmann constant

T = temperature, f(v) = voltage function (power law, ~1.5)
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Copper Wire Bond and Temperature/Humidity

o Copper is not as noble as gold

(@)

Noble coatings (palladium) can
come off during bonding

Palladium (Pd) coating can also
create galvanic couple with
copper

o Studies have shown early
failures during temp /humidity
testing

(@)

Some dependency on molding
compound (need lower pH,
lower halogen content)

Uncertain if JEDEC test with
acceleration factor based on
Peck’s equation (based on
aluminum /gold) is still valid

Halogen-Free Molding Compounds

I _ CU
A A

Pd-Cu

50%
40%
30%
20%
10%

0%

Cmpd A Cmpd B cmpd C

Figure 6. Failure rates after 336 hours biased HAST test
for three experimental mold compound formulations

with 0.8 mil bare Cu and Pd-coated Cu wire on Al bond
pads. (5V bias, 1300C, 85% RH, electrical open/short

H. Clauberg, Chip Scale Review, Dec 2010
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Copper Wire Bond and Temperature/Humidity (cont.)

o T. Boettcher believe early failures are due to galvanic
corrosion of Cu-rich intermetallics (Cu,Al,) (EPTC 2010)

o Induces the formation of copper oxides between the
intermetallic and the copper bond wire

o Initial failures during JEDEC HTRB and Autoclave testing
were reversed by increasing the amount of intermetallic
through annealing

o Small anode (intermetallic) relative to cathode greatly
increases corrosion rate
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Status of Cu-WB Durability-Reliability Research iNEMI P2B

o iNEMI Phase 2B: HAST 130degC/85% Rel. Humidity for 384
hours on loose parts

o Tested every 4 days at 96, 192, 288 and 384 hours.

o Failure pattern suggests more of a durability issue (however, how
relevant is 384 hours under HAST?)

Fig14. HAST 130degC/85%HKH Test Result for BGA

96hrs 192hrs 288hrs 384hrs
BGA1 0/24 0/24 0/24 0/24
BGAZ 0/34 0/34 1/34 1/33
BGA3 1/34 0/33 0/33 1133
BGA4 0/34 0/34 0/34 2134
BGAS 0/34 0/34 0/34 1134
BGAY 0/96 0/96 0/96 0/96
DfR Solutions
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Wire Bonds and Temperature Cycling (Wedge Flexure)

o Driven by differences in coefficient of thermal expansion (CTE)

o Flexing motion results create microcracks at the heel
wirebond

o Model based on theory of curved beams

I_ 051
X pase — Lyyire

I
—f L =-1] |2
“Alb)hp ) |“="T1-(D/L)

Strain at the heel of the wire
(assumes bond pads at same height)

of the

AT

°* r = wire radius * o = coefficient of thermal expansion

* D = half wire span (CTE)

* L = wire length * AT = change in temperature
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Wedge Flexure (cont.)

o Coffin-Mason Based Low-Cycle Fatigue

Nf — Cgm

o € and m empirically determined to be 1.0 and (-1.4)
respectively for aluminum wedge bonds
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Wire Bonds and Temperature Cycling (Axial Tension)

o Wire encapsulated in molding compound can
experience tensile stresses in the wire due to
differential expansion and contraction

—— E _ ﬂ 'E T Modulus of molding compound is ignored
ﬂ-w - W 'EEE ﬁ“.l : because of its minimal contribution

N, =Co"
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Wire Bonds and Temperature Cycling (Shear)

o Shear stresses between the substrate (s), the bond pad (p)
and the wire (w)

2 T 12 v 1.2 1/2
TW*M:[ re EPSh(ZIw}_l sinh {wa}z} AT

—| +
4Z*A%| cosh(Zl,) cosh*(Z1,) 0
o ris wire radius -
o A is cross-sectional area Zl = Gp[ r__ + {1 _ pj) Wp
o W is width b-”' E"‘AW E""AS _
o G is shear modulus
o b is thickness _ G —w) 4 (05— )
o lis length ¢ pr[ (=) L+ (EsAs) /1EpAp (1 _‘"5}]]
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Competing Failure Mechanisms
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Validation (Aluminum-Aluminum System)
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Copper Wire and Temperature Cycling

o Power module industry believes copper wire is more robust
than aluminum

o Changes being implemented for electric drivetrain

o Part of improvement is believed to be mEARRES
° ° éTCJ") —\\ .“\
due to reduced temperature variation = S
from improved thermal conductivity g T N N |
Q ® 12
o Part of improvement could be due to Lot <o)
. . Fi_gure 5: Temperature distribution along a 49011}11
I’ecr)’S‘I'CI I I 1ZATION N. Tanabe, Journal de Physique IV, 1995 L”ufseoiﬁ’;ﬁ;ﬁ;h Al dashed curve. Cu solid red

. . D. Si , CIPS 2010
o Can result in self-healing P

o Part of improvement could be more robust fatigue behavior
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Bending Stress (MPa)

Copper vs. Gold — Temperature Cycling

o Copper superior based on these publications

140 ——r-s T ———r e . ...-r,-”]

L ' 0 Tough Pitch Cu 1
- \\ \ i o OFC. 1
120 \ L .

A\N a

100

a0 | . ! = i : : : : |
[ o — T T

I \ i N 0 10 20 30 40 50 60

[ . : N (10° cycles)

L - |
60 - &' [ Fig. 9. Experimental results of fatigue tests in the S—N diagram for three

i - values of mean stress. Specimens marked with an arrow did not fail.
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Aluminum vs. Copper — Temperature Cycling

o Copper seems superior

Aluminum Copper
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Thermal Cycling Reliability and Assembled Parts

o Loose Cu wire-bonded parts have passed component level
thermal cycle tests, but have failed during thermal cycling
of automotive E/E modules

o Believed, but not confirmed, to be due to additional

expansion-contraction stresses from the CTE mismatch part
and PCB
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1
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I
i
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Low temp. | 1SILICON 1BOND WIRES TPIN SOLDER INTEGRITY
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DfR Solutions 0
reliability designed, reliability delivered

Predicting Reliability of Solder Joints
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Solder Joint Fatigue

o Knowing the critical drivers for solder joint fatigue, we can
develop predictive models and design rules

Volume of Solder
Thickness of Solder
Solder Fatigue Properties

Elastic Modulus (Compliance) of Component
\ Length of Component

CTE of Component
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Predictive Models — Physics of Failure (PoF)

o Modified Engelmaier for Pb-free Solder (SAC305)

o Semi-empirical analytical approach

o Energy based fatigue
o Determine the strain range (Ay)

Ay =C %A&AT

S
o Cis a correction factor that is a function of dwell time and

temperature, Ly is diagonal distance, o is coefficient of
thermal expansion (CTE), AT is temperature cycle, h is
solder joint height
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Predictive Models — Physics of Failure (PoF)(cont.)

o Determine the shear force applied to the solder joint

(az—al)-AT-L=F.£ L L . h R (2—1/ D

+ + + +
A BA AGs AG, (9-Gya

o Fis shear force, L is length, E is elastic modulus, A is the areq, h

is thickness, G is shear modulus, and a is edge length of bond pad

o Subscripts: 1 is component, 2 is board, s is solder joint, c is bond
pad, and b is board

o Takes into consideration foundation stiffness and both
shear and axial loads
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Predictive Models — Physics of Failure (PoF)(cont.)

o Determine the strain energy dissipated by the
solder joint
! F

AW =0.5-Ay.-—
A

o Calculate cycles-to-failure (N;,), using energy
based fatigue models

N, =(0.0019-AW )"
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Solder Joint Validation

O

Energy-based analytical
equation shows strong
correlation to both test and
field failures

When correlation is not

observed, typically driven by

the presence of an axial

loading condition (constraints,

potting)

o Requires use of compatibility
of displacements

100,000
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1.000

Cycles to Failure (Experimental Resulis)

100
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1.000 10,000
Cyeles to Failure (Pradicted by Softwara)

100,000
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AT (052 — 0‘1)

1 1

AE, " AE,
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Summary / Conclusion

o The field of reliability prediction is not stagnant
o Driven by need for new materials, new technologies

o Driven by demand for faster time to market (can not test
everything)

o Driven by limited resources (can not FEA everything!)

o Be aware when knowledge is sufficient, validated by o
physical understanding and testing, to proceed with
modeling and simulation
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