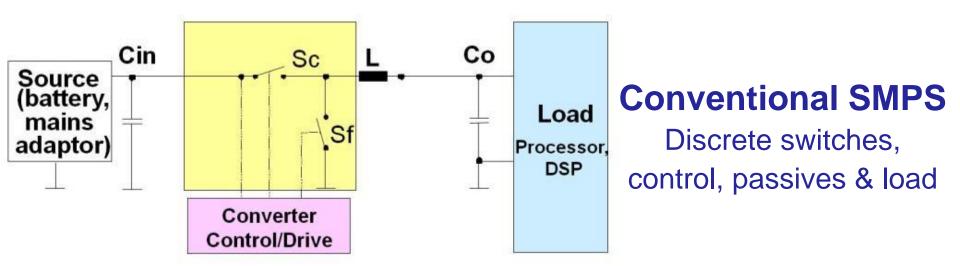
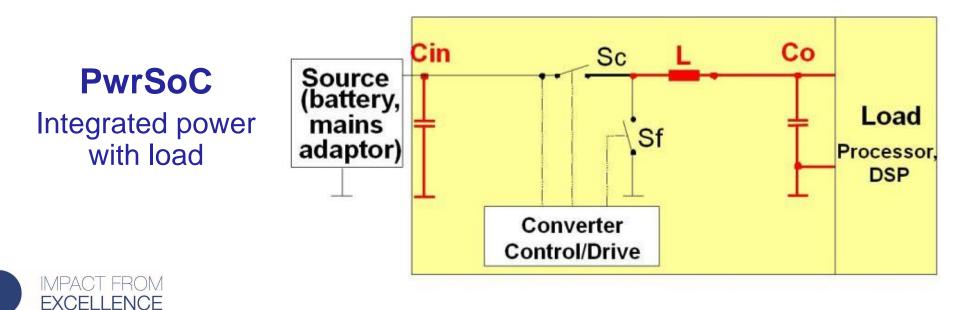


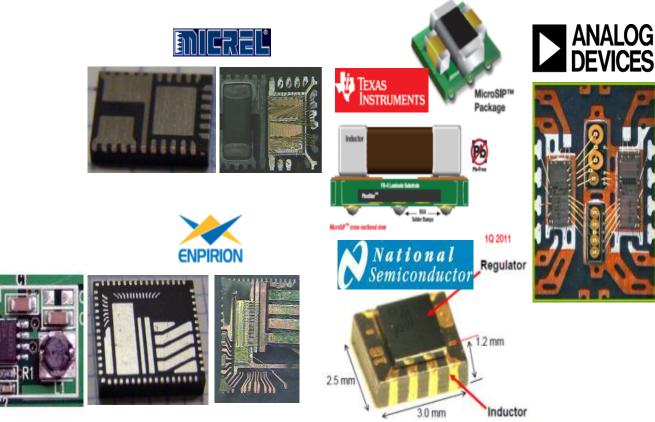
PwrSiP Power Supply in Package Power System in Package Prof. Cian O'Mathuna, FIEEE **Tyndall National Institute University College Cork,** Ireland www.tyndall.ie Cian.omathuna@tyndall.ie

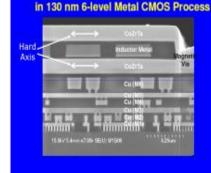

- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!



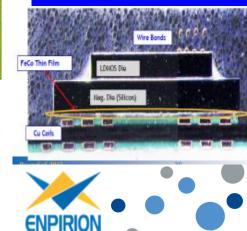
Tyndall Evolution of Power Management Circuits

National Institute Institiúid Náisiúnta


Institiúid Náisiúnta


Power Management - Supply Chain Evolution

Power Bricks PSU Companies


IMPACT FROM

PwrSiP Power Semiconductor Semiconductor Companies PCB Companies PwrSoC?? System on Chip Companies

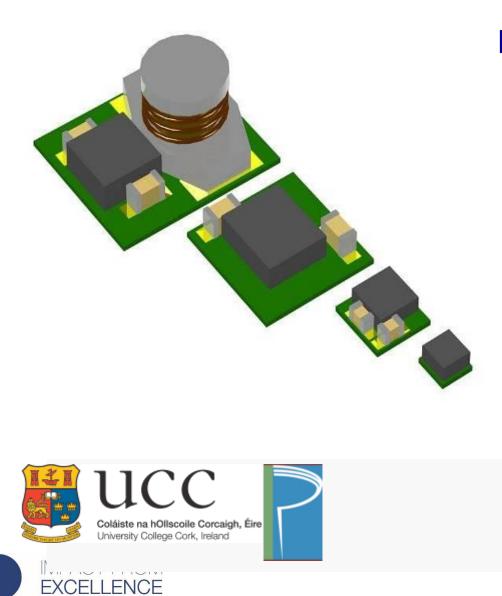
Cross-Sectional Image of Inductor

Universal Power Management Specs

Take Up No Space

Cost Nothing

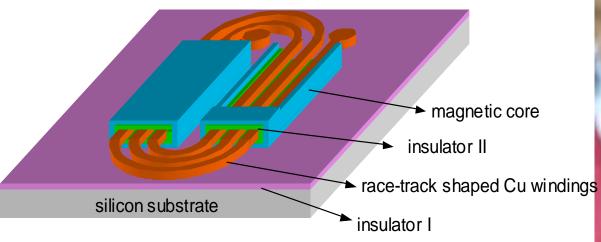
Last Forever

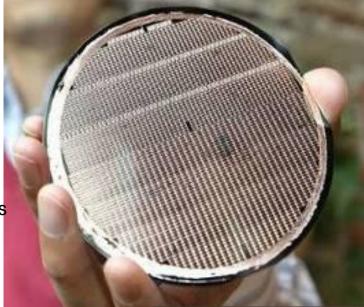

Zero Power Loss

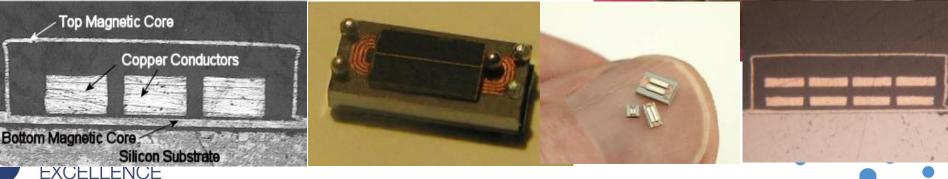
Evolution to Power Supply on Chip (PwrSoC)

Footpr <u>i</u> nt	Volume			
(mm²)	(mm ³)	y MHz		
50	150	1		
30	25	5		
7.0	3.5	20		
2.0	1.0	50-100		

- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!



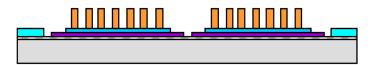




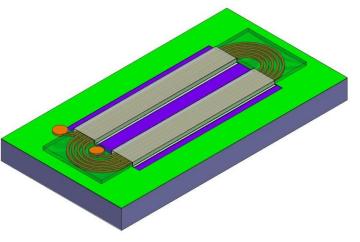
Magnetics on Silicon for Integrated Power

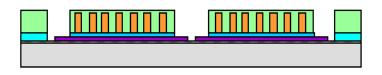
MAGIC Making Magnetics Disappear into ICs

Micro-magnetics Process (Race Track structure)

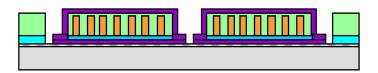

Institiúid Náisiúnta

Magnetic cores wrap around windings


1st Metal Layer



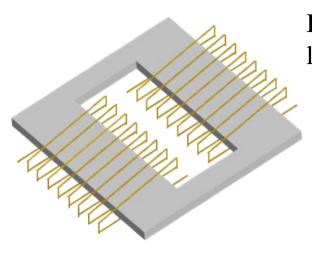
layer



2nd Metal Layer

IMD-Insulation Layer

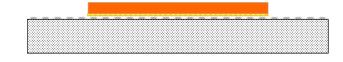
3rd Metal Layer

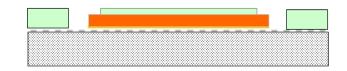


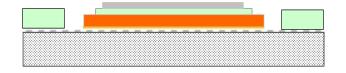
Micro-magnetics Process (Toroidal structure)

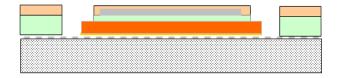
Windings wrap around magnetic core

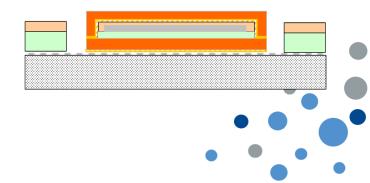
1st Metal Layer




ILD- Insulation layer


2nd Metal Layer


IMD- Insulation Layer

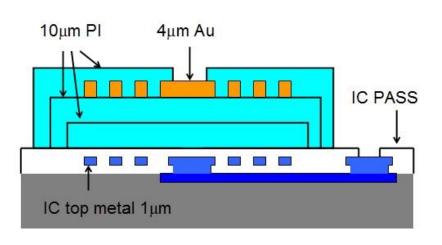

3rd Metal Layer

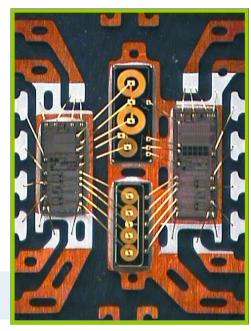
Micro-inductor structures - Summary

National Institute

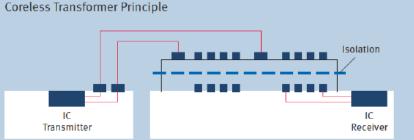
	Institute	Disadvantages
Conventional Micro- inductors	Advantages	Disadvantages
Solenoid & Toroid	 High saturation currents Ease of magnetic core deposition and lamination Uniaxial anisotropy applicable in solenoid cores 	 Complex fabrication process for windings Uniaxial anisotropy for closed core structures difficult to realise for toroidal cores
Planar/ Spiral	 Ease of winding deposition High inductance densities Suitable for low-medium current applications 	 Higher DC resistance Low saturation current Needs two layer magnetic core for higher inductance Uniaxial anisotropy for closed core structures difficult to realise
Racetrack	 Ease of winding deposition High inductance densities Suitable for low-medium current applications Uniaxial anisotropy applicable in racetrack cores Higher operational frequency 	 Higher DC resistance Low saturation current (<1 A) Needs two magnetic layer core Core laminations is more difficult to realise
Stripline	 High inductance densities High current handling Low DC resistance Easy of winding deposition Uniaxial anisotropy applicable in stripline cores High operational frequency 	 Needs two magnetic layer core Core laminations is more difficult to realise Difficult to achieve high inductance within reasonable aspect ratio structure

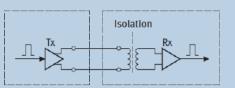
Tyndall Magnetics Research / Technology Roadmap


- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!



On-Chip Coreless Transformer for Isolated Power (and Signal Transfer/Communications)





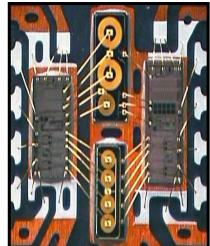
iCoupler

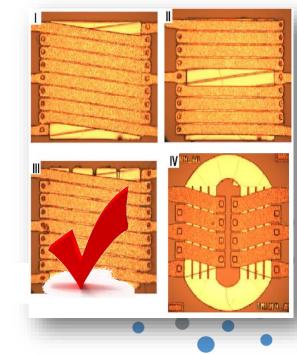
ISOFACE[™] PowerSiP

A lot of advantages compared to optocoupler

- No degradation over time
- Gain reliability
- High temperature range ... 150°C
- Very fast transmission (10 ... 100MHz)
- Low power consumption

Measured Microtransformer Performance Air-Core Vs Magnetics Core

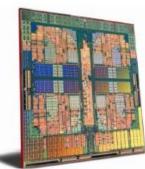

	-i		
	Air Core	Tyndall Gen1	Tyndall Gen2
Technology	Air Core		WHERE THERE IN TOTAL DESIDE SERVICE SERVICE SERVICE
Device Size	2mm ²	24mm ²	3mm ²
Frequency	180MHz	10MHz	20MHz
Inductance	8nH	440nH	240nH
L Density	17nH/mm ²	18nH/mm ²	80nH/mm ²
Coupling	0.85	0.93	0.97
DC R	0.46 Ohms	0.5 Ohms	0.96 Ohms
Efficiency	70%	63%	78%
EXCELLENCE	· · · · · · · · · · · · · · · · · · ·		• •



Wafer-level Magnetics for isolated power transfer

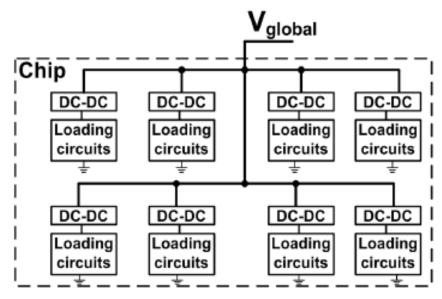
- •Today's air-core transformers will be replaced with magnetic-core transformers.
- Multiple and Conflicting Design Contraints:
 coupling, power loss, open circuit inductance, isolation, physical size.
- Magnetic Core isoPower Solenoid:
 - FeCoB multilayer.
 - Better Efficiency & Power.
 - Low Noise Emissions (EMI).

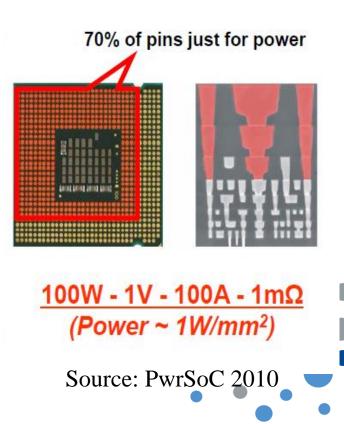
ANALOG Xing Xing, Baoxing Chen, Analog Devices.



Granular Power Management for Complex SoCs

National Institute Institiúid Náisiú




Ex. 1: Multi-Core On-Die VR Motivation – Power Reduction

 Clear need for separate supplies to enable per-core power management.

AMD Phenom Quad Core Processor

How to efficiently support multiple voltage rails on the die?

EXCELLENCE

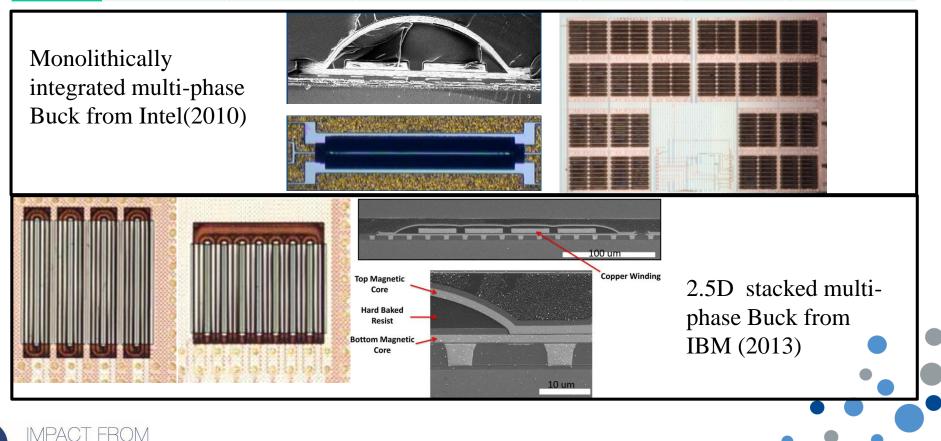
Endura Technologies and MediaTek Inc. Announce Commercial Partnership

DUBLIN, Ireland and HSINCHU, Taiwan, **May 4, 2016** /PRNewswire/ -- Endura Technologies (International) Ltd. announced a commercial partnership with MediaTek

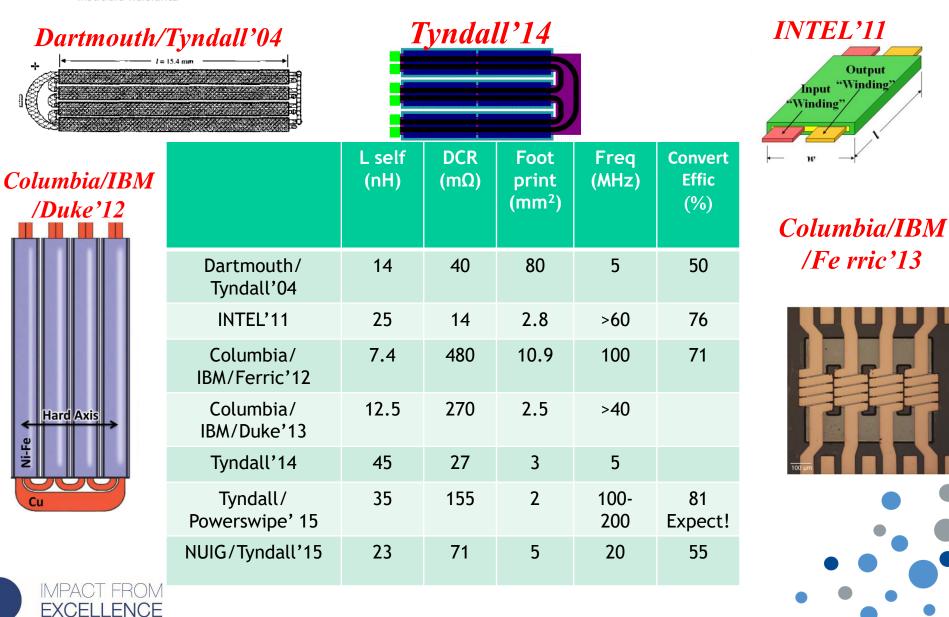
Endura Technologies (International) Ltd, headquarters in Dublin, Ireland

- fabless semiconductor company providing leading edge power management solutions for the microelectronics industry
- two main focus areas are **embedded power management** for very demanding system-on-chip (SoC) CPU type applications, as well as stand-alone power management integrated circuits (PMICs)

www.tyndall.ie



EXCELLENCE

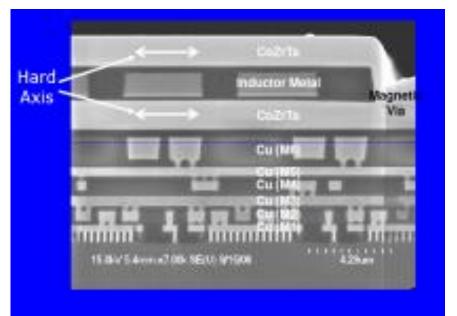

High Frequency IVR with Integrated Magnetics

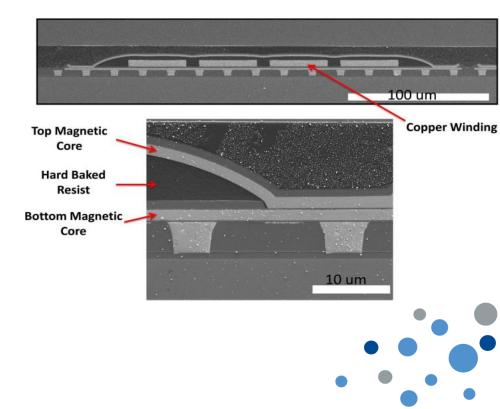
	Frequency (MHz)	Inductance (nH)	Peak Converter efficiency (%)	topology	Inductor area (mm²)	Current density (A/mm ²)	Inductance density (nH/mm²)
Intel	30-140	21	76%	16 phases	2.8	8.93	~170
IBM	30-300	12.5	71%	8 phases	1.96	3.21	50

Device 2 - Integrated coupled inductor

- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!

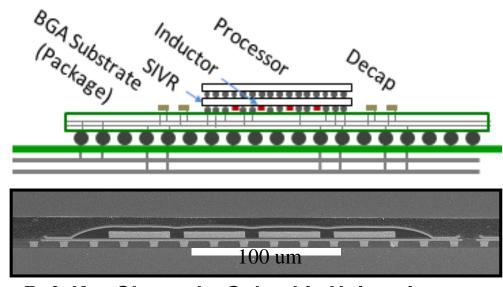
IMPACT FROM EXCELLENCE


Evolution of Power Converters


PwrSoC

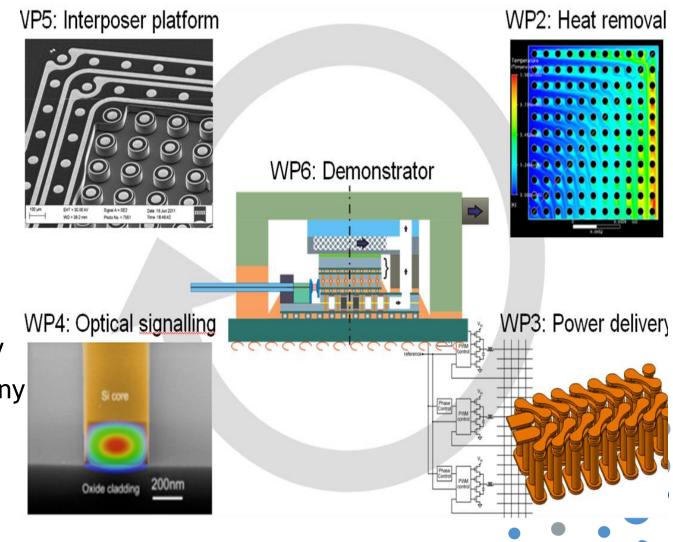
Inductor fabricated on Si die, load may also be integrated

2.5D stacked multi-phase Buck from IBM (2013)



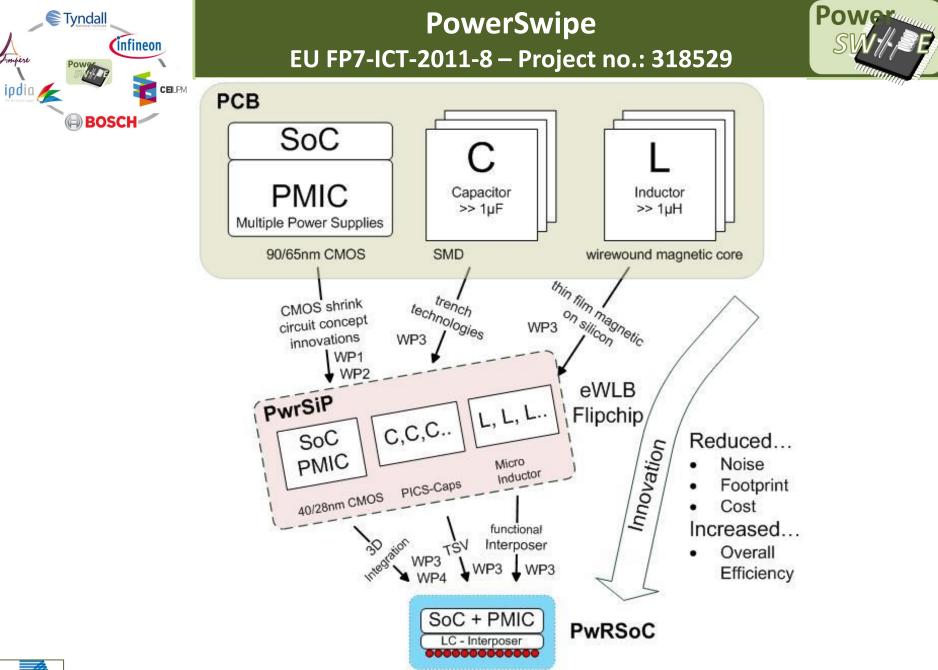
2.5D/3D Chip Stacking Power Passive Interposers

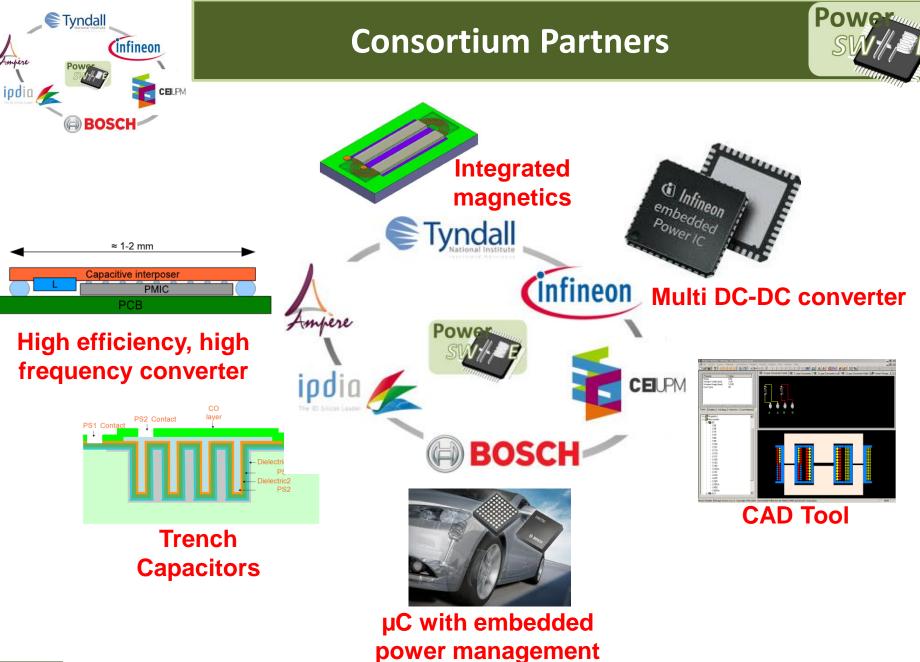
- Increased power density from custom fabricated power inductors:
 - Inductors fabricated on low-cost interposer and integrated with IC via chip-stacking.
 - Decap and power switches can be included on interposer design.
 - Allows "one-way" current flow improving efficiency.
 - Better transient performance due to lower impedance of input supply.
 - Step on the way to monolithic integration?



Ref: Ken Shepard – Columbia University

Tyndall CarrICool: Interposer supporting optical signaling, liquid cooling, and power conversion for 3D chip stacks
 EU FP7 Project: 619488 - Begin: Jan. 2014 - End: Dec. 2016


- IBM Research Zurich, Switzerland
- ETH Zurich, Switzerland
- Tyndall National Institute, Ireland
- Fraunhofer, Germany
- TU Chemnitz; Germany
- AMIC, Germany
- IPIDIA, France;
- Optocap, Scotland; EXCELLENCE



POWER SoC With Integrated PassivEs First EU-funded Project in Power Supply on Chip

- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!

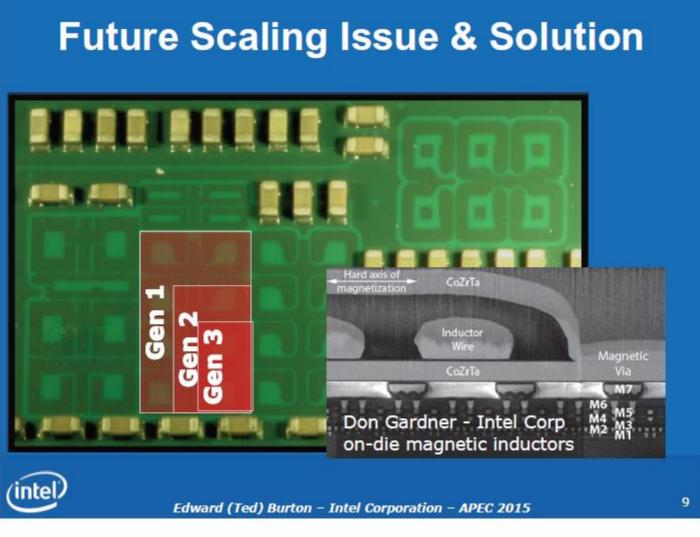
EETimes Connecting the Global Electronics Community Intel Haswell packs integrated voltage regulator Rick Merritt 5/23/2013 06:53 PM ED

• seven external voltage regulators made by third parties, lower the bill of materials and motherboard footprint.

• deliver about 50 percent better battery life than the prior lvy Bridge on active workloads while doubling graphics performance.

• Power Chip Vendors: ON Semiconductor, Intersil and Texas Instruments Linear Technology, Infineon, Maxim, Volterra and International Rectifier.

FIVR Photo - Package Underside



Edward (Ted) Burton – Intel Corporation – APEC 2015

6

Power Supply on Chip(PwrSoC) International Workshops

next generation technology for emerging business opportunities

new technologies new applications new markets

189 Attendees 50:50 Industry/Academia Boston, MA, USA – October 2014

Altera (2), Anagenesis (2), Analog Devices (6), Apple (2), Dell (2), Dialog (3), Fairchild (2), Ferric Semiconductor (2), Huawei (7), IBM (6), Infineon (2), Intel (5), IPDIA (2), Maxim (9), Mornsun Guangzhou S&T Co., (2), Murata (4), NXP (3), Qualcomm (4), Raytheon (2), Silana Semiconductor (2), TI (4), Treehouse Design (2), TSMC (2), Wurth Electronik (4)

Carnegie Mellon (2), Dartmouth College (5), Harvard (6), Insa Lyon (3), MIT (10), NCSR Demokritos (2), Northeastern (2), Tyndall (3), UC Berkeley (2), U. Illinois UC (2), U. of Toronto (6), UP Madrid (2)

Integrated Power Conversion and Power Management

next generation technology for emerging business opportunities

new technologies new applications new markets

Highlights

- Switched Capacitor Vs Inductor Converters
- Granular power for multi-volatge rail, multi-core, microprocessors, servers, HPC
- High density on-chip, capacitors
- Foundry Opportunities PSiP (including PCB embedded silicon) to PwrSoC

Integrated Power Conversion and Power Management next generation technology for emerging business opportunities

new technologies new applications new markets

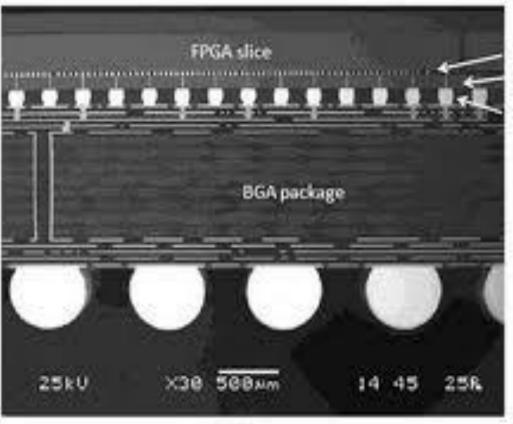
Personal Highlights Magnetics on Silicon

- Ferric Semiconductor:
 - Fabless Semiconductor Company

Fe <mark>rric</mark>

- Delivering complete IVR solution
- Package Voltage Regulator / Monolithic Voltage Regulator
- CMOS compatible integrated power inductors
- Integrated power inductor devices will be accessible through High Volume Manufacturing Foundry with standard CMOS design flow support (DRC, LVS, xRC, advanced models).
- Devices will be available as BEOL process option at TSMC s

www.tyndall.ie

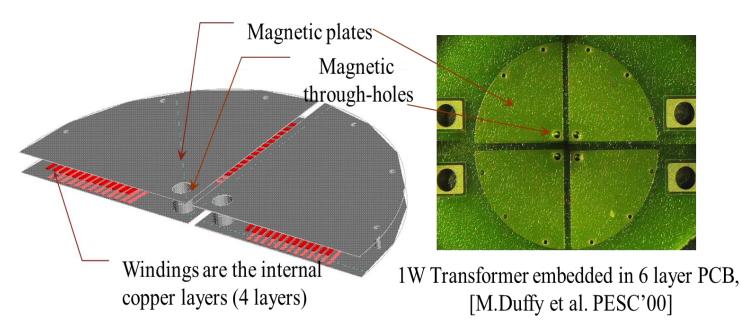


EXCELLENCE

3D Chip Stacking Power Passive Interposers

EETIMES Connecting the Global Electronics Community Product News Xilinx ships the world's first heterogeneous 3D FPGA Clive Maxfield 5/30/2012 03:43 PM EDT

Mi	Ċſ	0	bu	m)	ps:	
						 1.8


Si interposer with

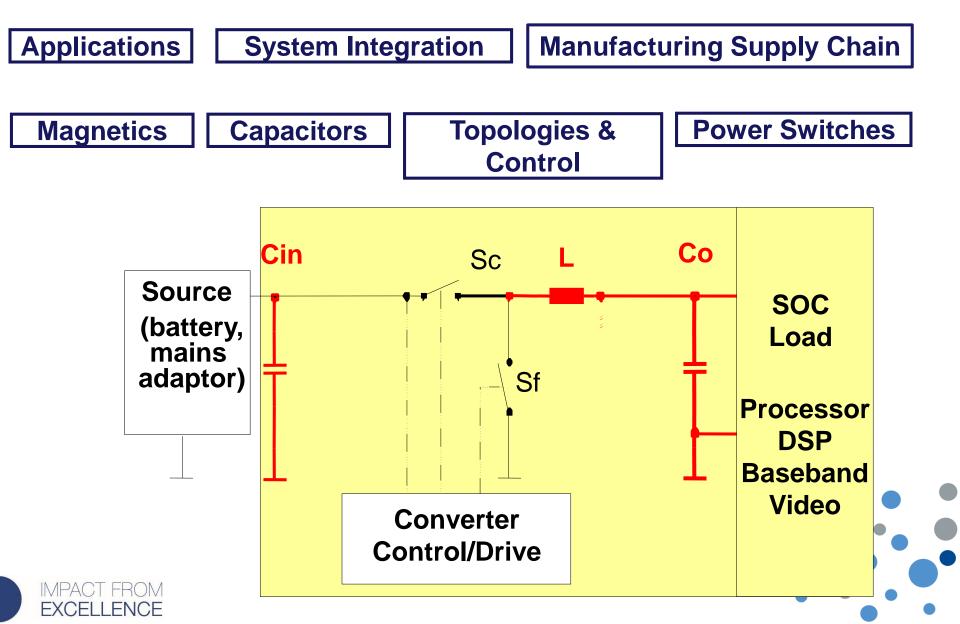
C4 bumps

Tyndall PCB Integrated Magnetics

Pot-core transformer structure [US Patent No. 6.150,915]

- Magnetic layers and windings embedded in the printed circuit board
- Magnetic through-holes provide closed magnetic path
- Patterning of magnetic plates reduces eddy-current effects

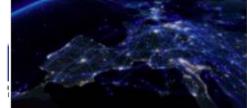
www.tyndall.ie


- Evolution of Power Converters
- Integrated Magnetics
- Killer Applications?
- "Functional Passive" Interposers
- Supply Chains
- Conclusions
- The Magicians!

PwrSiP - Multidisciplinary Challenge

Integrated Magnetics for PwrSiP Roadblocks to Commercialisation

- System-level Solution
- Technology Progression:
 - High frequency operation
 - EMI
 - Wafer-level Test
 - Reliability
- Manufacturing Supply Chain:
 - Magnetics on Silicon BEOL / Foundry / OSAT
 - 2.5D / 3D Integration
 - Passive Interposers with integrated inductors and capacitors


International Workshop on Power Supply On Chip October 3-6, 2016 (provisional) Madrid, Spain

Centro de Electrónica Industrial

Integrated Power Conversion and Power Management

roland's DJ Stractural Funds

Programmes 2007 - 2013 Co-funded by the tride Government and the European Union The 5th edition of the International Workshop on Power Supply On Chip will be held at the Universidad Politécnica de Madrid, Spain, provisionally scheduled for October 3-6, 2016. This conference is organized by the Centro de Electrónica Industrial (CEI-UPM).

PwrSoC 2016 is the leading international technical workshop dedicated to advancing important power conversion technologies. The workshop focuses on the integration of both modular and granular commercially successful electronic power converters for multiple applications, by accessing a broad range of leading-edge technologies. Complete on-die integration and integration within package are of prime interest. System performance requirements presented by present day and emerging applications demand ever-greater current density, voltage regulation and optimized control, form factor reduction, efficiency, and cost reduction.

A major challenge on the path to integration and form factor reduction of dc-dc converters is the difficulty of integrating energy handling power passive components with conventional silicon processes. Advanced technologies for the design and manufacture of these passives are focal topics for the workshop. Strategies at circuit and system levels are of fundamental importance.

Sessions

- Plenary Sessions
- Systems & Applications
- Topologies and Control
- Power Semiconductor Technology
- Magnetics

- Capacitors for Power Electronics
- System Integration, Packaging and Manufacturing
- Granular Power
- Open Forum Discussion

Conference Site

The site of the conference is the Escuela Técnica Superior de Ingenieros

The Magicians

- PSMA
- EU PowerSwipe Team
- EU Carricool Team
- Tyndall Team
 - Integrated Magnetics
 - MEMS Fabrication
 - Electrodeposition
 - Test and Characterisation
 - Packaging and Integration
 - Business Development
 - Technology Transfer / Legal

