Powder Core Development and High Frequency Considerations

Brad Van Fleet
Sales Engineer
Overview

• Powder Core Development
 • Expansion of Kool μ® Max product line
 • XFlux®, new permeabilities
• Shapes Development
 • Round Leg U-Core Geometries
 • EQ26
• R&D Pipeline
 • Improved High Flux (58 and 59 materials)
 • High Frequency Powder Core Material

• High Frequency Considerations
 • Current Material Comparison
 • Perm vs. Frequency
 • Core Loss
Kool μ MAX

- Superior DC Bias performance and lower losses compared to standard Kool μ
- Lower cost compared with MPP and High Flux.

<table>
<thead>
<tr>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
</tr>
<tr>
<td>Alloy Composition</td>
</tr>
<tr>
<td>Saturation Flux Density</td>
</tr>
<tr>
<td>Curie Temperature</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
</tr>
<tr>
<td>OD Size Range (mm)</td>
</tr>
<tr>
<td>Coating Color</td>
</tr>
</tbody>
</table>

- 19μ, 75μ, 90μ and Shapes (E-Cores, U-Cores, Blocks) in Development
<table>
<thead>
<tr>
<th>Material (60µ)</th>
<th>DC Bias at x Ls (Oe)</th>
<th>Core Loss (mW/cm³)</th>
<th>Cost Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80%</td>
<td>50%</td>
<td>(W_{1000 \text{ G}, 50 \text{ kHz}})</td>
</tr>
<tr>
<td>Kool Mµ MAX</td>
<td>68</td>
<td>135</td>
<td>190</td>
</tr>
<tr>
<td>Kool Mµ</td>
<td>43</td>
<td>95</td>
<td>210</td>
</tr>
<tr>
<td>XFLUX</td>
<td>89</td>
<td>175</td>
<td>680</td>
</tr>
<tr>
<td>High Flux</td>
<td>87</td>
<td>165</td>
<td>350</td>
</tr>
<tr>
<td>MPP</td>
<td>60</td>
<td>106</td>
<td>175</td>
</tr>
</tbody>
</table>
Kool Mµ Max vs. Kool Mµ
XFLUX—new permeabilities

• Silicon Iron Alloy Powder
• Cost 40-50% less than High Flux
• Applications:
 • Low & medium frequency chokes, where inductance at peak current is critical.
 • Where High Flux would be used but cost is a constraint.

• Available in Toroids, E-Cores, U-Cores, and Blocks
XFLUX – 75µ and 90µ

Now available in 050 (13.5mm OD) to 102 (103mm OD) size toroids.

• 19µ coming in next few months
Shapes Development

- Round-Leg U-Cores
 - Rounded blocks and cylinders
 - Helical Windings
 - 84mm x 30mm Block + 30mm Cylinder
 - Expanding to industry standard sizes

- EQ Shapes in Powder Core
 - Focused on EQ 26/19, three leg lengths.
 - Available in 60µ XFLUX
 - High Flux and Kool Mµ development next
 - EQ 32 will be next available size
Magnetics’ R&D

• Improved High Flux and Next Generation High Flux (59)

<table>
<thead>
<tr>
<th>Material (60µ)</th>
<th>DC Bias at x Ls (Oe)</th>
<th>Core Loss (mW/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Flux</td>
<td>87</td>
<td>165</td>
</tr>
<tr>
<td>Improved High Flux</td>
<td>100</td>
<td>185</td>
</tr>
<tr>
<td>Next Gen High Flux (59)</td>
<td>125</td>
<td>215</td>
</tr>
</tbody>
</table>

• High Frequency Powder
 • Optimize Losses from 500kHz to 3MHz
 • Material selection still under consideration – looking at Sendust base
 • Potentially multiple materials optimized for different frequency ranges
 • Looking to market to determine best options
 • Where is highest demand?
Kool Mµ MAX

New Perms
19µ, 75µ & 90µ

New Shapes
Blocks, E, U, I

XFLUX
75µ and 90µ, Addition of 19µ

New Geometries
EQ26 in XFLUX
EQ32
Round Block/Cylinder Expansion
Other EQ sizes/materials

58 Series
Improving standard High Flux

59 Series
Next Generation High Flux

High Frequency Material
Optimized for High Frequency Losses
HIGH FREQUENCY CONSIDERATIONS

• Focused testing on lower loss materials
 • MPP, Kool Mµ, Kool Mµ MAX

<table>
<thead>
<tr>
<th>Material (60µ)</th>
<th>DC Bias at x Ls (Oe)</th>
<th>Core Loss (mW/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80%</td>
<td>50%</td>
</tr>
<tr>
<td>MPP</td>
<td>60</td>
<td>106</td>
</tr>
<tr>
<td>Kool Mµ</td>
<td>43</td>
<td>95</td>
</tr>
<tr>
<td>Kool Mµ MAX</td>
<td>68</td>
<td>135</td>
</tr>
</tbody>
</table>

• Comparing permeability versus frequency up to 10 MHz for 60µ

• Comparing core loss at 500kHz, 1MHz, 2MHz, and 5MHz (60µ)
High Frequency Considerations – μ vs. Freq 60μ
High Frequency Considerations – Core Loss Data Compilation
High Frequency Considerations – Core Loss Data Compilation

26u High Frequency Loss Comparison

- Core Loss (mW/cm³)
- Flux Density (Gauss)

Lines for:
- 2 MHz
- 1 MHz
- 500 kHz

Legend:
- MPP
- Kool Mu
- Kool Mu MAX
High Frequency Considerations – Summary

• Summary Table

<table>
<thead>
<tr>
<th>60µ</th>
<th>MPP</th>
<th>Kool Mµ</th>
<th>Kool Mµ MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Loss 1MHz, 100G</td>
<td>150 mW/cc</td>
<td>175 mW/cc</td>
<td>165 mW/cc</td>
</tr>
<tr>
<td>Core Loss 1MHz, 250G</td>
<td>1110 mW/cc</td>
<td>1100 mW/cc</td>
<td>1090 mW/cc</td>
</tr>
<tr>
<td>Core Loss 5MHz, 35G</td>
<td>215 mW/cc</td>
<td>260 mW/cc</td>
<td>250 mW/cc</td>
</tr>
<tr>
<td>Core Loss 5MHz, 70G</td>
<td>1000 mW/cc</td>
<td>1100 mW/cc</td>
<td>1040 mW/cc</td>
</tr>
<tr>
<td>µ vs. f 5MHz</td>
<td>-5.4%</td>
<td>-7.6%</td>
<td>-6.5%</td>
</tr>
<tr>
<td>µ vs. f 10 MHz</td>
<td>-17.4%</td>
<td>-22.0%</td>
<td>-19.6%</td>
</tr>
</tbody>
</table>

• Future Steps
 • Further High Frequency Testing and Curve Development
 • High Frequency Bulletin
 • High Frequency Powder Material
Presentation Conclusions

• Kool μ MAX available in 26μ - 60μ
 • 19μ, 75μ, 90μ and shapes soon
• Higher perm XFLUX (75μ & 90μ)
• New Shapes Development
 • EQ26 and Round Leg U-Cores
• R&D Development
 • High Flux Improvement and High Frequency Powder Material
• High Frequency Testing
 • μ vs. Frequency Performance: MPP > Kool μ MAX > Kool μ
 • Core Loss Performance
QUESTIONS?