PHOTOCURABLE DIELECTRICS FOR ELECTRONIC PACKAGING AND ENCAPSULANT APPLICATIONS

Wuttichai Reainthippayasakul, Qing Wang, Michael Lanagan

wyr5024@psu.edu

3D PEIM Symposium 6/14/2016

Electronic Packaging & Encapsulant Materials

 To protect microelectronics from mechanical stress, electrical breakdown, chemical/moisture erosion, radiation, and harsh environments

Requirements

- High thermal conductivity (> 0.5 W/K.m)
- Low coefficient of thermal expansion (CTE)
- High thermal stability
- High dielectric strength (> 10 kV/mm)
- Low electrical conductivity
- Good mechanical strength
- Moisture and chemical resistance
- Easy and rapid processing
- Low cost of materials

Electronic Packaging & Encapsulant Materials

 Polymer-based materials are used extensively in electronic packaging and thermal managing systems.

 Applications: packaging moldings, encapsulations, passivation coatings, interlayer dielectric adhesives, PCB substrates, thermal interface materials

Photocurable Polymers

Advantages

- Cure-on-demand properties
- Low energy consumption
- High curing speed
- Ambient temperature processing
- Possibly solvent-free technology

Potential Applications

- Surface coatings
- Adhesives
- Sealants or encapsulants
- Photolithography
- 3D printing materials

Mechanism: Photoinitiators are excited by UV radiation to generate reactive species and then initiate polymerization process among reactive monomers.

Oligomers Monomers

Photoinitiators

Photocurable Polymers

Radical Polymerization

- > Acrylates, Thiol-ene
- Wide variety of materials
- Fast curing rate
- Larger depth of cure
- Lower cost of materials
- Inhibited by oxygen

Cationic Polymerization

- > Epoxides, Vinyl ethers
- Limited raw materials
- Slow curing rate
- Smaller depth of cure
- Higher cost of materials
- Inhibited by humidity and basic compounds

Epoxy Acrylate Resins

Bisphenol A Epoxy Acrylate

Novolac Epoxy Acrylate

Advantages

- High curing reactivity
- Thermal stability
- Hardness
- Adhesive properties
- Chemical resistance
- Electrical insulation
- Inexpensive

Limitations

- Relatively high viscosity
- Limited flexibility
- Brittle and low elongation

Epoxy Acrylate Resins

 The properties of epoxy acrylate resins could be modified by the introduction of additional comonomers, reactive diluents, or some additives.

J. Appl. Polym. Sci. 2005, 98, 1180.

Thiol-Ene Polymer Systems

CH2

SH

SH

SH.

CH₂

Thiol-Ene Polymer Systems

Sample material	Monomers	Functionality mixing ratio	E-modulus @ 25 °C/MPa	T _g /°C
OSTE-Thiol (90)	Tetrathiol : triallyl	1.9:1	250	35
OSTE-Allyl (30) OSTE-PDMS (20)	Triallyl : trithiol Thiol-PDMS : vinyl-PDMS	1.3:1 1.2:1	0.33	68 -36
References PDMS (Sylgard 184)	Vinyl siloxanes	1:1	0.8	-135
PMMA (Plexiglas®) NOA 81 (Norland Products)	Methacrylates Thiol and ene monomers	1:1 1:1	1800 1400	105 75

Lab. Chip. 2011, 11, 3136.

Photocurable Composites

 To improve properties of photocurable polymers, some ceramic fillers can be incorporated into the polymer matrix to perform photocurable composites.

Photocurable Composites

Formulations for Photopolymerizable Liquid Encapsulants (PLEs)

• Ep	oxy Novolac-based Vinyl Ester Resin	~25 wt.%
Fu	ised Silica	70-74 wt.%
Ph	notoinitiator (BAPO)	0.2 wt.%
 Sil 	ane Coupling Agent	1 wt.%

Table 2. Comparison of material properties between PLEs and conventional molding compounds

	PLE	Molding Compound (6)
Viscosity (cP)	5,000 – 30,000 @ 30°C	1,5000 – 100,000 @ 170°C
Flexural Modulus (kg _f /mm ²)	1,000 - 1,200	1,000 - 1,500
Flexural Strength (kg _f /mm ²)	9 - 11	9 – 15
CTE (µm/m⁰C)	19 – 22	16 – 25
$T_{g}(^{\circ}C)$	145 – 155	140 - 180
Thermal Stress Parameter (kg _f /mm ²)	0.6 - 1.3	0.5 - 1.5
Thermal Conductivity (W/m·K)	0.56 - 0.62	0.50 - 0.70

Photocurable Composites

 Polyurethane acrylate composites with surface-modified boron nitride for underwater sonar encapsulants

Purpose of Work

- To develop some novel photocurable dielectrics that have potential for electronic packaging and encapsulant applications
 - Epoxy acrylate-based polymers
 - Thiol-ene polymer systems
 - Photocurable composites
- To investigate variation and effects of photocurable formulations on their properties

Materials

Preparation of Materials

Epoxy acrylate base resin	BPAGDA
Crosslinking comonomer	TMPTA, TAIC, PETMP
Solvent	THF
Photoinitiator	HMPP
Filler	BNNs, Functionalized BNNs

	FTIR
•	Gel Content
•	SEM
-	

Research Progress

• BPAGDA-TMPTA

Sampla	% Weight				
Sample	BPAGDA	TMPTA	HMPP		
1	100	-	3		
2	90	10	3		
3	70	30	3		
4	50	50	3		
5	30	70	3		

- □ Spin coating (THF) on Si wafer
- \Box UV radiation (254 nm): 10 min \rightarrow Thin film (thickness: 15-50 μ m)
- □ Thermal treatment at 150 °C, 6 h

BPAGDA-TMPTA

BPAGDA-TMPTA

Gel Content & Thermal Stability

General Procedure:

- Reflux the cured specimen in THF at 60 °C for 24 h
- Dry the specimen in vacuum oven at 60 °C for 24 h

Sample	% Weight		Gel	T (0C) *	
	BPAGDA	TMPTA	Content		
1	100	-	0.67	424	
2	90	10	0.72	460	
3	70	30	0.74	462	
4	50	50	0.75	464	
5	30	70	0.81	464	

 * T_d is observed by TGA

Mechanical Strength

% Weight		Tensile	Young's	Elongation	
BPAGDA	TMPTA	(MPa)	(GPa)	(%)	
100	-	24.2	1.9	1.3	
90	10	40.6	1.4	2.8	
70	30	41.4	2.6	1.6	
50	50	12.0	2.2	0.6	

% Weight		Tensile	Young's	Elongation	
BPAGDA	TAIC	(MPa)	(GPa)	(%)	
100	-	24.2	1.9	1.3	
90	10	42.6	1.8	2.7	
70	30	76.3	2.6	3.3	
50	50	26.1	2.6	1.7	

	Thiol-Ene Mole Ratio		Tensile	Young's	Elongation
	BPAGDA	PETMP	(MPa)	(GPa)	(%)
	1	0	24.2	1.9	1.3
Stoichiometry	1	1	32.1	1.4	73.3
Ene excess	2	1	46.5	1.7	5.0
Thiol excess	1	2	4.1	0.1	46.8

Ongoing Research & Future Works

- Investigation of thermal, electrical, and viscoelastic properties of the prepared films
- Studies on formulations of photocurable dielectrics without solvent by using reactive diluents

- Reduce viscosity of epoxy acrylates
- Generate solvent-free systems

Ongoing Research & Future Works

 Studies on composites between selected photocurable polymer systems and ceramic fillers such as BNNs

Ceramic Fillers

Summary

High Performance Electronic Packaging & Encapsulant Materials

Acknowledgements & Contacts

Dr. Michael Lanagan mxl46@psu.edu Dr. Qing Wang quw10@psu.edu

