Packaging and integration of passive components to reduce board space with optimized thermal and electrical performance

John Bultitude, Tony Burk, Allen Templeton, Nathan Reed, Galen Miller, John McConnell, Javaid Qazi, Abhijit Gurav, Lonnie Jones, Jim Magee, Manuel Ortiz, Mark Laps, Reggie Phillips, Kunihiro Kusano, Kenichi Chatani & Yoshihiro Saito
Presentation Outline

- Resonant Capacitors & Inductors for Switched Tank Converters
 - U2J Capacitors & Mn-Zn Ferrite inductors
 - Leadless Stacks for reduced footprint
 - High Current Handling

- LC Module for further size reduction

- WBG Capacitor Requirements for higher power & voltages
 - C0G Capacitors
 - Leadless Stacks for higher capacitance

- Packaging Roadmap
Switched Tank Converters

48V – 12V Step Down Power Conversion with 98.92% efficiency up to 650W [1]

Resonant Capacitors and Inductors with
- Small Footprint
- Low AC Losses
- High Frequency ~300kHz

Development of U2J Resonant Capacitors

- Change of capacitance with temperature for X7R is too large, although $K \sim 3500$
- C0G Dielectric Constant is too low $K \sim 31$
- U2J Developed $K \sim 82$

$$C = K K_0 A n / t$$

Where:
- C = Capacitance
- K = Dielectric constant
- K_0 = Permittivity of free space ($8.854 \times 10^{-12} \text{ F/m}$)
- A = Overlap Area of opposed electrodes in MLCC
- n = Number of active layers in MLCC
- t = Thickness of active layers
Development Leadless Stacked Capacitors

Transient Liquid Phase Sintering, TLPS is used to bond the terminals of the MLCC together.

U2J 1812 0.47μF 50V MLCC
Leadless Stacks ESR & Orientation

1.4µF Leadless Stacks have lowest ESR with electrodes perpendicular $P = i^2ESR$

<table>
<thead>
<tr>
<th>U2J Part Description</th>
<th>Part Number</th>
<th>Number of MLCC</th>
<th>E4980A ESR @ 300kHz (mΩ)</th>
<th>E4990A ESR @ 300kHz (mΩ)</th>
<th>Solder Pad Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1812, 0.47µF, MLCC C1812C47J5JACTU</td>
<td>1</td>
<td>0.4</td>
<td>1.2</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>2 x Traditional, 0.94µF C1812C944J5JLCTU</td>
<td>2</td>
<td>1.4</td>
<td>1.3</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>3 x Traditional, 1.4µF C1812C145J5JLCTU</td>
<td>3</td>
<td>1.7</td>
<td>1.6</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>2 x Low Loss, 0.94µF C1812C944J5JLC7805</td>
<td>2</td>
<td>1</td>
<td>0.9</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>3 x Low Loss, 1.4µF C1812C145J5JLC7805</td>
<td>3</td>
<td>0.8</td>
<td>0.4</td>
<td>38.4</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of Traditional and Low Power Loss configurations](image-url)
Leadless Stacks Ripple Current Heating

Lower ESR in Low Loss Orientation 1.4µF Leadless Stack has much lower self-heating at 300kHz 20A_{RMS}

Traditional Orientation
≈ 65°C Max.

Low Power Loss Orientation
≈ 35°C Max.
Leadless Stacks Ripple Current Life Testing

- 1.4µF Leadless Stack in the Low Loss Orientation were tested for 2000 hours @ 105°C with 30A_RMS, 300kHz & 25V_DC applied
- IR remains stable and there were no failures (0/34)
U2J Leadless Stack Development

<table>
<thead>
<tr>
<th>U2J Part Description</th>
<th>Part Number</th>
<th>ESR (mΩ)</th>
<th>SRF (MHz)</th>
<th>ESL (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1812, 0.47µF, MLCC</td>
<td>C1812C474J5JACTU</td>
<td>1.6 1.9 2.2</td>
<td>8.3 400</td>
<td></td>
</tr>
<tr>
<td>2 x Traditional, 0.94µF</td>
<td>C1812C944J5JLCTU</td>
<td>1.9 2.4 2.9</td>
<td>4.8 860</td>
<td></td>
</tr>
<tr>
<td>3 x Traditional, 1.4µF</td>
<td>C1812C145J5JLCTU</td>
<td>2.4 3.3 4.9</td>
<td>3.3 1100</td>
<td></td>
</tr>
<tr>
<td>2 x Low Loss, 0.94µF</td>
<td>C1812C944J5JLC7805</td>
<td>1.4 1.8 2.2</td>
<td>7.5 450</td>
<td></td>
</tr>
<tr>
<td>3 x Low Loss, 1.4µF</td>
<td>C1812C145J5JLC7805</td>
<td>0.7 1.0 1.2</td>
<td>7.5 400</td>
<td></td>
</tr>
</tbody>
</table>

The Low Loss Orientation has:
- Low ESR
- Low ESL
- Higher SRF
Development of Resonant Inductor

- Core loss reduced with the suitable material
- Fringing loss reduced by improved structure
- High saturation current
- Positive change of inductance with temperature compensates the negative change of \(U_{2J} \)

SATURATION CHARACTERISTIC
56nH @ 100kHz 0.1V\(_{\text{RMS}}\)
TPI078060L056N

SATURATION CHARACTERISTIC
56nH @ 100kHz 0.1V\(_{\text{RMS}}\)
TPI078060L056N

L of variation -1%~+1.2%
LC Module

Combine Capacitors and Inductor to achieve a smaller footprint

Component Footprints

<table>
<thead>
<tr>
<th>Discrete 4 MLCCs & Inductor</th>
<th>Leadless Stack & Inductor</th>
<th>LC Tank Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>~124 mm²</td>
<td>~93 mm²</td>
<td>~69 mm²</td>
</tr>
</tbody>
</table>

Sn Plated Cu J-Lead Connector
Low impedance
Machine Placeable

1812 4 Chip MLCC
High Cap
Low ESR

56nH SMD Chip Inductor
TPI Power Series
High switching frequency
Low Core Loss & DCR

Assembled with KEMET KONNEKT TLPS Interface

Bottom Views
Impedance and ESR

Individual Inductor & Leadless Stack

Combined Inductor & Leadless Stack Vs. LC Module
Ripple Current Heating

Leadless Capacitor & Inductor were compared to the LC Module @ 20 A_{RMS}, 270kHz

LC Module does not reach significantly higher temperatures
Capacitor Requirements for Higher Power

Higher Switching Frequencies
20kHz → 100kHz → 10 MHz

- Smaller, low ESR, low ESL low loss capacitors with high dV/dt, dI/dt & current handling capability

Higher Operation Voltages
450V → 900V → 1200V → 1700V

- Reliable performance at higher voltages

High Junction Temperatures
105°C → 125°C → 150°C → 200°C+

- Reliable performance at elevated temperatures ≥ 125°C with robust mechanical performance
 - Packaging close to the hot semiconductor to:
 - Lower ESL
 - Minimize cooling costs

\[
C = \frac{P_{\text{load}}}{U_{\text{ripple}} \left(U_{\text{max}} - \frac{U_{\text{ripple}}}{2} \right) 2 \pi f_{\text{rectifier}}}
\]

Example: DC Link for 400V with 10% Ripple

Source: Modified from Prof. R. Kennel, Technical University Munich, Germany
Higher Voltages - Automotive Power Requirements

12V \rightarrow 48V
- Provide higher power
 - While current lowered
 - Brake recuperation
 - Air and heaters
 - Hybrid motor

450V \rightarrow 900V
- Provide higher power
 - While current lowered
 - Faster charging
- MLCC using U2J dielectric are currently limited to $< 200V$ temperatures to $125^\circ C$
- Development of C0G Ni BME MLCC

Source: ZVEI/Infineon
Performance Comparison
3640 Ni BME C0G vs. Competitor Cu PLZT

3640 0.22μF Ni BME C0G has:
- Better accelerated life
- Stable cap. with temp. & voltage
- Less ripple heating
- High MOR
- > 0.22μF with Leadless Stack Solutions

Ni BME C0G MLCC 3640 0.22µF 500V 150°C

ESR & Current Handling @ 150°C 100kHz

- Lower DF & ESR reduce the power dissipated

\[P = \frac{i^2 d}{2\pi f C} = i^2 R \]

- \(P \) = power dissipated
- \(i \) = current
- \(d \) = dissipation factor
- \(f \) = frequency
- \(C \) = capacitance
- \(R \) = resistance, ESR

Ripple Current Life Testing

- No failures after 1000hrs @150°C
 - 15A\(_{\text{RMS}}\) 100kHz
 - 10A\(_{\text{RMS}}\) 100kHz with 400V\(_{\text{DC}}\) Bias
3640 0.22µF 500V Ni BME C0G for 150°C
Temperature Accelerated HALT

- MLCC were HALT tested at 260°C at 1000, 1100, 1200 & 1300V\textsubscript{DC} (n = 40, with Au term.)
- MTTF Vs. Voltage was recorded
- Voltage exponent ~ 19 @ 260°C
- Calc. MTTF @ 500V\textsubscript{DC} ~ 8500 years

MTTF = 2934 min.

\[y = 7.13E+59x^{-18.6} \]
0.88µF Leadless Stacks (4 X 3640 0.22µF 500V)
Orientation: Traditional Vs. Low Power Loss

Traditional	Low Power Loss
2.9 nH | 0.9 nH

Low Loss Orientation has:
- Higher SRF
- Lower ESR

0.88μF Leadless Stacks (4 X 3640 0.22μF 500V)

Ripple Current Heating: Traditional Vs. Low Loss Mounting

At $20A_{\text{RMS}} \times 300\text{kHz}$ Low Loss Orientation has:

- Lower Temperature
- More even heating
Thermal Modeling
3640 0.22µF 500V; 2 & 4 chip Leadless Stacks

Low Loss Model

Study thermal resistance with other boundary conditions
- Forced air cooling or dielectric fluids
- Embedded in package

[Rohrer Versus # of MLCCs in Stack](chart)

Inverter Capacitor Trends

DC-Link Hybrid Inverter & Snubber

Battery Voltage Boost

DC-LINK

H-Bridge

Package MLCC close to SiC
- Long lifetime @ 150°C
- Higher Frequency Switching

Package Electrolytics/Films in cooled areas further from SiC
- Long lifetime @ < 105°C
- Lower Frequency Switching

MLCC snubber close to SiC
Thank You!

John Bultitude, Ph.D.
Vice President, Technical Fellow - Ceramic Innovation Center
KEMET Electronics Corporation
Office Phone: +1-864-963-6450
johnbultitude@kemet.com