PSMA Power Supply Software / Firmware Reliability Improvement Report

A Comprehensive Study on Digital Implementations of Power Supplies Commissioned by the PSMA Board of Directors and Executed by the PSMA Reliability Committee
Purpose of the PSMA
The Power Sources Manufacturers Association (PSMA) is a not-for-profit organization incorporated in the state of California. As stated in the papers of incorporation, the purpose of the Association shall be to enhance the stature and reputation of its members and their products; improve their knowledge of technological and other developments related to power sources; and educate the electronics industry, academia, and government and industry agencies as to the importance of, and relevant applications for, all types of power sources and conversion devices.

PSMA Mission
The PSMA mission is to integrate the resources of the power sources industry to more effectively and profitably serve the needs of the power sources users, providers, and PSMA members.

Reliability Committee Mission
In alignment with the PSMA mission of bringing value and utility to members as well as the power electronics industry as a whole, the PSMA Reliability Committee aims to spearhead industry initiatives that identify and attempt to solve the pertinent industry challenges related to the reliability and performance of power supplies and associated products. The scope of the Committee shall include anything that impacts the life and desired application of a power supply, including (but not limited to) interaction with a system and/or other power supplies.

Reliability Report
As with so many things, power electronics are transitioning from analog control to digital control. Power supply designers now need to create and embed software in power supply products. Vendors of power control chips and power control processors have started to provide code. While some is helpful, this software is often not well engineered for software development and software maintenance. Moving from power electronics with analog control to power electronics with digital control is a significant transition and this report attempts to present key finding related to the challenges and solutions to reliability in the of digital control of power electronics.

Software Reliability
Software Reliability is the ability of software to repeatedly perform intended functionality for defined operating condition(s) or environment(s) over a specified length of time. While the focus here is on software reliability, hardware variation and evolution over time impacts software reliability and legacy software function.

High quality software with high reliability requirements is typically implemented following a standards-based regulatory process. Examples of applications where software has strict reliability specifications include aviation control, medical devices, and transport vehicle control.

Power electronics control software is often required to have performance levels as high as aviation software. If the power supply is for use in aviation or other such applications, any safety standards also apply to the power supply control code.
Software engineering best practices are being adopted for digital power electronics control for power supplies to ensure reliability does not suffer with the transition to digital control. Some of these best practices are relatively new, evolving, and unfamiliar in the power electronics world.

Report Structure

This report examines a wide array of problems and challenges in the field of digitally controlled power supplies, then proceeds through observed and proposed improvements and best practices.

- Section 1 is a summary of the typical issues, challenges, and points of failure in digitally controlled power supplies.
- Section 2 covers what best practices are useful for high quality digital power electronics.
- Section 2 addresses the quality of software in digital power electronic power supplies.
- Section 3 contains guidance on design process improvement, allowing development to move toward best practices. Some standards from related and comparable product sectors using processes to achieve high quality software are introduced.
- Section 4 delves into various specifications and templates that support best practices and quality.
- Section 5 describes program management and integration of different engineering cultures and tools to create reliable product.
- Section 6 addresses a range of tests, inspections, types of analysis, plans, and tools that support developing high-quality product.
- Section 7 reviews key metrics from both power hardware and software control backgrounds.
- Section 8 considers some new metrics that might benefit the power supply industry.
Acknowledgements

Special thanks to the authors, contributors, reviewers, and supporters for this report, including:

The PSMA Reliability Committee
- Co-Chair: Tony O’Brien, Cisco Systems
- Co-Chair: Brian Zahnstecher, PowerRox

The PSMA Office
- Joe Horzepa
- Lisa Horzepa

ELMG Digital Power (Third-Party Consultant)

PSMA Reliability Subcommittee contributors to this report:
- Nitish Agarwal, SL Power
- Manish Bhardwaj, Texas Instruments
- Shane Callanan, Advanced Energy
- Ada Cheng, AdaClock
- Rick Fishbune, IBM
- Hamish Laird, ELMG Digital Power
- Bill Mallory, SL Power
- Ed Massey, Massey Consulting
- Greg Miller, Sarda Technologies
- Steve Miller, SL Power
- Shobhana Punjabi, Cisco Systems
- Michael Seeman, Eta One Power
- Eric Swenson, IBM

Additional reviewers for this report:
- Pasi Lauronen, Efore (Representing EPSMA)
- Nitya Ramdas, Texas Instruments (Representing PMBus™)
- Devin Cottier, Texas Instruments

A huge thanks to the PSMA Board of Directors and organization for funding this study and supporting its dissemination to the industry in the spirit of driving systemic industry communication and improvement, in accordance with the PSMA and Reliability Committee missions.
PSMA Reliability Committee

Committee Chairs

Brian Zahnstecher, PowerRox Tony O’Brien, Cisco

Committee Members

Ada Cheng, AdaClock Rick Fishbune, IBM
Patrick Le Fèvere, Powerbox Tim McDonald, Infineon
Steve Miller, SL Power Bill Mallory, SL Power
Nitish Agarwal, SL Power Greg Miller, Sarda
Mike Seeman, Eta One Power Ed Massey, Massey Consulting
Eric Swenson, IBM Finbarr Waldron, Tyndall National Institute
Jon Fifield, Astronics Kevin Parmenter, Taiwan Semi
Huai Wang, Aalborg University Dao Zhou, Aalborg University
Burak Ozpineci, ORNL Shobhana Punjabi, Cisco
Patrick McCluskey, University of MD, CALCE Lab Abhijit Dasgupta, University of MD, CALCE Lab
Francesco Carobolante, IoTissimo Shane Callanan, AEI
Hamish Laird, ELMG Digital Power Manish Bhardwaj, Texas Instruments
Evan Lucore, Artesyn
Table of Contents

Table of Contents .. 9

1. **Reliability Challenges** .. 14

 1.1 PWM Timer Precision ... 14
 1.2 VPO Timer Precision ... 16
 1.3 LLC Power Supply Digital Control ... 18
 1.4 Digital Integrator Types ... 18
 1.5 All Sum Integrators .. 19
 1.6 Integrator Precision Loss .. 20
 1.7 Single Sample Noise .. 21
 1.8 IIR Filter Type — DFT II Second Order .. 23
 1.9 Limited Number of Bits ... 23
 1.10 Converter Non-Linearity .. 24
 1.11 Digital System Inherent Non-Linearity .. 26
 1.12 Dynamic Range and Precision Trade-Offs .. 27
 1.13 Coefficient Quantification and Instability ... 27
 1.14 System Stability Assessment in Small Signal ... 27
 1.15 In-Band Noise Spectrum ... 28
 1.16 Converter Parallel Connection ... 29
 1.17 Over-Current Detection and Current Limiting with Digital Systems .. 30
 1.18 Over-Voltage Detection with Digital Systems .. 30
 1.19 Accurately Predicting the Processing Power Required .. 31
 1.20 Assessing the Suitability of ADCs ... 31
 1.21 Choosing ADC Number of Bits .. 34
 1.22 Measuring the Frequency Response ... 34
 1.23 Calibrating the Controller in Measuring Response ... 35
 1.24 Recognizing Phase Dependency in Frequency Response ... 35
 1.25 Managing Software Versioning .. 36
 1.26 Direct Digital Design of Compensators .. 37
 1.27 Choosing the Sampling Rate .. 37
 1.28 Sample Rates for Variable Frequency Converters — Assessing the Potential Aliasing Products 38
 1.29 Aliasing Product Magnitude Assessment ... 39
 1.30 Transient Over-Voltage / Anti-Aliasing Filter .. 39
 1.31 Power Converter Design for Control ... 40
 1.32 No Method to Measure System Response ... 41
 1.33 Closed-Loop Response Measurement not Representing Open-Loop Response 41
 1.34 Frequency Response Measurement Inaccuracy .. 42
 1.35 Calibration of Frequency Response Measurement Inaccuracy .. 42
 1.36 Verification Testing for Filters ... 43
 1.37 Incomplete Filter Testing .. 44
 1.38 Testing Filter with Generic Coefficients .. 45
 1.39 Verification Testing for Compensators ... 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40 Verification Testing for Software</td>
<td>45</td>
</tr>
<tr>
<td>1.41 Coefficient Adjustment</td>
<td>46</td>
</tr>
<tr>
<td>1.42 Converter Variation</td>
<td>47</td>
</tr>
<tr>
<td>1.43 Developing Software in a Team</td>
<td>48</td>
</tr>
<tr>
<td>1.44 Managing Software Verification Testing</td>
<td>48</td>
</tr>
<tr>
<td>1.45 Automating Software Verification Testing</td>
<td>49</td>
</tr>
<tr>
<td>1.46 Software Quality Planning</td>
<td>50</td>
</tr>
<tr>
<td>1.47 Test Planning</td>
<td>51</td>
</tr>
<tr>
<td>1.48 Choosing Development Platforms and Coordinating Production Hardware</td>
<td>52</td>
</tr>
<tr>
<td>1.49 Software Coders Designing Control Systems</td>
<td>52</td>
</tr>
<tr>
<td>1.50 Software Release</td>
<td>53</td>
</tr>
<tr>
<td>1.51 Software Version Reporting</td>
<td>53</td>
</tr>
<tr>
<td>1.52 Having Software Self-Report Version</td>
<td>54</td>
</tr>
<tr>
<td>1.53 Wrong Software Version in the Field</td>
<td>54</td>
</tr>
<tr>
<td>1.54 Verification Testing Result Tracking</td>
<td>55</td>
</tr>
<tr>
<td>1.55 Verification Result Analysis</td>
<td>55</td>
</tr>
<tr>
<td>1.56 Verification Result Pass-Fail Criteria</td>
<td>56</td>
</tr>
<tr>
<td>1.57 Production Component Variation</td>
<td>56</td>
</tr>
<tr>
<td>1.58 Production Component Substitution</td>
<td>57</td>
</tr>
<tr>
<td>1.59 Start-up Transient Over Currents</td>
<td>57</td>
</tr>
<tr>
<td>1.60 Mode Change Transients, Abnormal Operation, Fault Response, and Recovery</td>
<td>58</td>
</tr>
<tr>
<td>1.61 Mode Change Converter Gain Changes</td>
<td>59</td>
</tr>
<tr>
<td>1.62 Synchronous Rectifier Enable / Disable Transient</td>
<td>60</td>
</tr>
<tr>
<td>1.63 Synchronous Rectifier Enable / Disable Transient with Parallel Converters</td>
<td>60</td>
</tr>
<tr>
<td>1.64 Paralleled Converter Connection</td>
<td>61</td>
</tr>
<tr>
<td>1.65 No Production Monitoring on Control Margins</td>
<td>62</td>
</tr>
<tr>
<td>1.66 Fault Masking</td>
<td>62</td>
</tr>
<tr>
<td>1.67 Communication Links</td>
<td>63</td>
</tr>
<tr>
<td>1.68 Analog Filter on Communication Bus</td>
<td>63</td>
</tr>
<tr>
<td>1.69 Communication Bus Noise Filter Exceeds Bus Timing Limits</td>
<td>64</td>
</tr>
<tr>
<td>1.70 References</td>
<td>64</td>
</tr>
<tr>
<td>2. Best Practices</td>
<td>66</td>
</tr>
<tr>
<td>2.1 Design Partition</td>
<td>66</td>
</tr>
<tr>
<td>2.2 Team Capability</td>
<td>66</td>
</tr>
<tr>
<td>2.3 Converter Design for Control</td>
<td>68</td>
</tr>
<tr>
<td>2.4 Version Control</td>
<td>68</td>
</tr>
<tr>
<td>2.5 Build Server</td>
<td>68</td>
</tr>
<tr>
<td>2.6 Verification Test Plan</td>
<td>69</td>
</tr>
<tr>
<td>2.7 Verification Testing</td>
<td>69</td>
</tr>
<tr>
<td>2.8 Code Inspection</td>
<td>69</td>
</tr>
<tr>
<td>2.9 Reasons for Code Inspection Reviews</td>
<td>69</td>
</tr>
<tr>
<td>2.10 Release Process</td>
<td>70</td>
</tr>
<tr>
<td>2.11 Project Tracking</td>
<td>70</td>
</tr>
<tr>
<td>2.12 Coding Standards</td>
<td>70</td>
</tr>
</tbody>
</table>
5. Program Management Process ... 114
 5.10 Change Management for Managers and Teams ... 124
 5.8 Software Practices, Including Change Management ... 123
 5.7 Challenges in the Team Structure ... 122
 5.6 Recommendations on Best Management Practice ... 121
 5.5 Digital Hardware Team Management .. 120
 5.4 Power Electronics Team Management ... 119
 5.3 Managing Digital Power Teams ... 117
 5.2 Digital Power Team Communication ... 115
 5.1 Team Structures and Team Cultures .. 114

4. Functional and Other Specifications ... 96
 4.10 References ... 112
 4.9 Power Electronic Interface Specification ... 112
 4.8 Software Interface Specification Template .. 111
 4.7 PSU Functional Partition Specification Template ... 111
 4.6 Development Team Specifications ... 110
 4.5 Digital PSU Verification Test Plan Example ... 106
 4.4 Software Security Assessment Specification .. 104
 4.3 Software Development Process Assessment Template ... 101
 4.2 Example Software Quality Specification .. 98
 4.1 Vendor and Supplier Specifications ... 96

3. Design Process Improvement .. 76
 3.11 References ... 94
 3.10 Risk Management Process .. 92
 3.9 Hardware Design for Power Converters Controlled Digitally ... 91
 3.8 Hardware Software Interfacing Process .. 91
 3.7 Code Release Process .. 90
 3.6 Code Test Planning ... 87
 3.5 Software Architecture and Design Process .. 86
 3.4 Specification Process .. 83
 3.3 Code Inspection and Review Guide .. 82
 3.2 Coding Standards .. 79
 3.1 Code Versioning Guide ... 76

2.22 References ... 73
 2.21 Processor Choice Process .. 73
 2.20 EMC Testing ... 73
 2.19 Specification of Digitally Controlled Power Supply ... 72
 2.18 Cultures of Power Electronics and Software .. 72
 2.17 Language of Digital Power Control .. 72
 2.16 Team Structures ... 72
 2.15 Code Escrow ... 71
 2.14 Code Review ... 71
 2.13 Code Design Standard Sources .. 71

© 2019 PSMA All Rights Reserved

PSMA Reliability Report 2019