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Basic power electronics elements: 
Switches, capacitors and inductors 

 Switches and capacitors: 

 Routinely fabricated 
on-chip. 

 Routinely made by 
combining thousands of 
parallel cells. 

 Inductors and other 
magnetics:  

 Why not on-chip 
cellular approach? 
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Why not arrays of on-chip cellular 
inductors?   

 Process and materials? 

 Hard, but feasible. 

 Scaling? 

 Can 100, 1000, or 1,000,000 inductor cells in parallel 
or series be used to make one good high-power 
inductor? 

 How does performance scale with size?  

 Does a 1% scale inductor, handling 1% of full power 
work as well as a single full size, full power inductor?  

 Can we make small high performance inductors? 
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A simple case 
 Fixed frequency.  

 B0 limited by core loss. 

 J0 limited by winding loss. 

 Find power handling VA: 

 
 

 Number of turns cancels out—scales impedance 
without affecting power capability or loss. 

 Scale all linear dimensions by a factor ϵ 

 Areas scale by a factor ϵ2 

 VA scales by a factor ϵ4  …   faster than volume (ϵ3)! 
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Simple case: implications 

Simple case = fixed loss densities mean fixed B0 J0  

 VA ∝  ϵ4   

 Power density = (VA)/volume ∝  ϵ4/ϵ3 = ϵ ∝ volume
3

  

 Power density is better in large sizes;  
worse in small sizes. 

 This is the most fundamental/basic reason why 100 
small inductors are worse than one big one. 
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Simple case: implications (continued) 

 Fixed loss densities mean loss ∝ volume ∝ ϵ3   

 Loss fraction (loss/VA) goes as ϵ3/ϵ4 = ϵ−1 

 Loss fraction is inversely proportional to  
linear scaling factor. 

 (From last page: power density ∝ ϵ) 

 Both power density and efficiency are better in 
large sizes and worse in small sizes.   
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Example:  
1 full-size L vs. 100 small Ls 

 100 small inductors can be: 

 In series, each L’=L/100.   

 In parallel, each 1/100 full current, but 100X L value. 

 Network of 10 in series/10 in parallel, same L value. 

 In each, energy storage and VA are reduced by 100X 

 With our assumptions, these options are equivalent. 

 Adjust N to obtain value needed; doesn’t change loss 
or power handling (VA). 

 Can they be tiny? 



Example:  
1 full-size L vs. 100 small Ls 

 100 small inductors are not so small:  

 At least 3.16 X  total volume 

 At least 3.16 X total loss 

 



Other considerations 

 Constant loss density might not make sense: 

 Cooling limited by surface area, not volume 

 Efficiency might be real limit, not cooling 
(especially at small sizes). 

 High frequency winding loss:  

 Depends on size vs. skin depth δ. 

 AC resistance problems are worse for large sizes. 
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Constraint on:  
loss per unit surface area 

 Steinmetz model for core loss:  𝑃𝑣 = 𝑘𝐵𝛽,    2 < 𝛽 < 3 

 Power law for flux density is very accurate even though 
a power law for frequency dependence is not. 

 

 

 

 

 

 

 Same trends: power density and efficiency are better in 
larger sizes. 
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Algebra 

Constraint: 

loss ∝ ϵ2 

Models: 

Pv=kB
β 

Pv=
ρ

2
J2 

≈ ϵ3.1 ≈ ϵ −1.1 

β = 2.5 



Constraint on:  
efficiency 

 Same models. 

 

 

 

 

 

 

 Maintaining the same efficiency in small sizes is very 
hard—power density plummets. 
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Algebra 

Constraint: 

Fixed loss  

fraction 

≈ ϵ13 

Models: 

Pv=kB
β 

Pv=
ρ

2
J2 



 
Summary so far .. 

 

 

 

 

 

 

 

 Or, graphically… 
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Graphically ….  
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All options on one complex plot 
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With high-frequency winding loss 
 Straight scaling would lead to bad designs 

 Instead: optimize winding design for each scale. 

 Various optimization constraints possible. 

 Two lead to the same scaling: 

 Fixed number of layers (including single layer) with 
optimized layer thickness 

 Optimized number of layers with fixed layer thickness. 

 Resulting winging scaling: 

 Put this into same analysis:  
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Algebra 

Pv=kB
β 

Fix efficiency or  

power density  



Complete 
results 

 Efficiency and  
power density usually 
better with large sizes. 

 Only exception: Heat-
flux-limited high-
frequency windings 
have slightly better 
power density at small 
sizes. 

 But efficiency is worse at 
small sizes. 

 Poor efficiency means 
efficiency is real 
constraint, and then 
power density drops fast.  

 Thermal situation for an 
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array of components can be worse than for one. 
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winding loss effects  
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The complex chart again, with HF 
winding loss 
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One more time, for air core 
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Implications 

 A single inductor or transformer for the full power is better 
than combining many small ones. 

 Better power density 

 Better efficiency 

 Drives need for custom magnetics. 

 Also motivates designs with a shared single core: 

 Single inductor with complex circuit  
(e.g. various approaches with switched capacitors). 

 Coupled-inductor designs. 

 Multi-channel transformer-coupled converters  with 
separate windings on a single core (ref. 14 of presentation). 
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Coupled inductor buck  
optimization example (2002) 
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Modular/cellular approach won’t lead to 
tiny power magnetics.  What will? 

 New semiconductors emerging:  GaN and SiC power devices. 

 Can allow much higher  
switching frequencies. 

 Theoretically allows smaller,  
more efficient magnetics. 

 But can this be realized  
in practice? 

 Windings? 

 Core materials? 
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IEEE power electronics magazine,  

March 2015 Credit to Jelena Popovic and Dragan  

Maksimovic for the ball and chain analogy 



Bonus content: scaling vs. f 

 Air-core inductors:  Loss fraction ∝ 
1

𝑓
 for typical 

windings (e.g., single-layers)  

 Magnetic-core inductors: 

 Depends on frequency dependence of core loss. 

 Frequency dependence of core loss is not well 
behaved—need actual data. 

 Also depends on winding type. 
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∝ 

 Before, we had: 

 

 Standard figure of merit:  
“Performance factor”  
B0∙f  

 For each frequency, f,  
choose flux density B0  
based on maximum 
 tolerable loss.   

Figure of merit for cores: 
performance factor 
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Ferroxcube data book 



Performance factor, linear scale 
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Some gain at high frequency— 
is it worth the pain? 

 Other things get more difficult—board layout, skin 
effect and proximity effect in windings … 

 Can capture effect of high-frequency winding losses 
in a modified performance factor. 
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Modified performance factor 

 Instead of fixing current, fix winding loss: Pw = I2Rac 

 Consider variation of Rac with frequency. 

 Skin-effect limited Rac ∝ f 0.5 

 Current for constant Pw  goes as I ∝ f -0.25 

 Modified performance factor PF = Bf 0.75 

 Different assumptions about winding design lead to different exponents. 

 

 

 

 

 Use PF = Bf 0.75 unless specific design scenario leads to a different choice.  
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No significant ac resistance effects  PF = Bf  

Fixed number of foil layers  PF = Bf 0.75 

Fixed number of wire strands  PF = Bf 2/3 

Fixed layer or strand thickness PF = Bf 0.5 



Modified performance factor 

 Based on considering skin effect in the winding 

 B∙f 0.75 
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Adding data from more NiZn Ferrites  
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 Data from Perreault group at MIT;   
Hansen et al., IEEE Trans. Pow. El., early access. 



Standard performance factor 
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 4X improvement vs. 100 kHz ... If you have a winding 
technology that makes proximity effect negligible. 



Conclusions 

 Miniaturizing magnetics is fundamentally difficult. 

 Scaling laws favor large components. 

 Use full size available. 

 Combine functions on one core when possible. 

 Consider frequency increases. 

 Air-core is always better at higher frequency. 

 Magnetic-core frequency scaling depends on 

 Magnetic material performance:  some good 
ferrites ~10 MHz. 

 High frequency winding capability 

 Need alternatives to litz in the MHz region. 
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APPENDIX 
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Windings at MHz frequencies … Litz? 

 Litz benefits drop off rapidly  
in the MHz range. 

 Barely better than a  
solid-wire winding. 

 

 Huge room for  
improvement in theory: 

 A single-layer winding 
only has current in one skin depth: At 10 MHz, 21 µm. 

 0.2% of a 1 cm winding window (0.23% with litz).  
→ 400X improvement theoretically available. 
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Description of key references 
Key references in high-frequency power magnetics with an emphasis on publications from our group and a focus on discrete 
components rather than chip-scale microfabricated components; for our perspective on the latter see [1]. 

For windings, Zimmanck’s method can efficiently generate frequency dependent winding loss matrices for any geometry, 1D, 2D, 
or 3D, and use them to predict loss for different nonsinusoidal waveforms in any number of [2]. This method applies very 
generally, including to coupled inductors, wireless power transfer coils, etc. References cited in [2] provide more detailed 
background, including [26,27].  See also [28]. A systematic approach to generating full models for loss and simulation for  1D 
geometry is provided in [3].  To use 2D models effectively for 3D geometries such as E-cores, the strategy in [25] can reduce the 
error involved by a factor of 5. 

Although the Dowell model is reasonably accurate, see the appendix of [9] for a simple correction that can enhance the accuracy.  
Also useful in the appendix of [9] is a simple effective frequency approach to address winding loss with non-sinusoidal windings. 

Strategies to reduce proximity effect loss, using multiple thin layers or avoiding multiple layers, are compared in [6, 7, 8], 
considering different types of optimization constraints. An overview of the most common implementation of thin layers to reduce 
proximity effect loss, litz wire, is provided in [9]. A practical guide to using it is provided in [10], and the most complete model 
including effects of details of twisting construction, is in [11]. Approaches for using thin foil layers beyond frequencies where litz is 
practical are discussed in [12]. An implementation of these concepts for a resonant coil for applications such as wireless power 
transfer is described in [13]. For other applications, thin foil layers can have capacitance issues; circuits designs that reduce the 
voltage swing on the windings (e.g., [14]) can help reduce the impact of the capacitance. 

The impacts of gap fringing and the quasi-distributed gap technique for reducing these problems are discussed in [15]. This 
reference includes data showing that a small gap is not effective for reducing the impact of fringing. With round-wire or litz-wire 
windings, shaping the winding can allow excellent performance with a standard gap [16]. 

In inductors with substantial dc resistance, two windings in parallel can be a good choice for good dc and ac resistance[17]. It is 
possible to extend this approach to applications in which the inductor carries a combination of line frequency ac current and high-
frequency switching ripple, using, if needed, a capacitor to prevent low-frequency current from flowing through the high-
frequency winding [18]. A foil winding with a semi-circular cutout region near the gap [19, 20, 21] can also be used to achieve a 
favorable ac/dc resistance combination. 

Although copper windings are most common, aluminum can offer advantages if cost or weight are important [22, 23]. 

Performance factor for magnetic materials is described and extended in [24], and data on performance factor is provided for many 
materials in the MHz range. For core loss with non-sinusoidal waveforms, the iGSE model remains the standard method [4], 
although some of its limitations are now known, as discussed in [5]. 
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