Multilayer Ceramic Capacitors (MLCCs)

Design and Characteristics
Form Factor
Design
MLCCs

Capacitances in parallel are additive

\[C_T = C_1 + C_2 + C_3 + \ldots + C_n \]

- Dielectric Material
- Inner Electrode
- End Termination
- Barrier Layer
- Termination Finish

\[C = \frac{\varepsilon_0 KA(n-1)}{d} \]

- \(C \) = Design Capacitance
- \(K \) = Dielectric Constant
- \(A \) = Overlap Area
- \(d \) = Ceramic Thickness
- \(n \) = Number of Electrodes

© 2019 KEMET Corporation
Common Failure Modes
Ceramic Materials are Inherently Brittle

Ceramic Properties
• High chemical bond strength
• High Elastic Modulus
• Low Ductility
• Very Hard
Typical Crack Signatures

The major sources of MLCC cracks are:

- **Mechanical damage (impact)**
 - Aggressive pick and place
 - Physical mishandling

- **Thermal shock (parallel plate crack)**
 - Extreme temperature cycling
 - Hand soldering
 - *Do not touch electrodes while hand soldering!*

- **Flex or Bend stress**
 - Occurs after mounted to board
 - Common for larger chips (>0805)

Failure is **not always immediate**!
External Forces on Ceramic Material

Compression

- Strong under compression

Tension

- Weak under tension
Flex Cracking
Excessive Bending

MLCC Under Tension

High Stress Region

Finite Element Analysis
Flex Cracking

Excessive Bending

MLCC Active Area

-45°

Flex crack signature

Starts here
Capacitor Mitigation Solutions
Level 1 Protection – Basic Level of Crack Protection

Floating Electrode

Pros
- Serial design
- Fails open

Cons
- Reduced capacitance in the same volume

Open Mode

Pros
- Crack doesn’t go through active area
- Fails open

Cons
- Reduced capacitance in the same volume
Capacitor Mitigation Solutions
Level 2 Protection – Intermediate Level of Crack Protection

Flexible Termination (FT-CAP)

Pros
• Increased flex capability
• High volumetric efficiency

Cons
• Fail short

End Termination/External Electrode (Cu)
Flexible Termination Epoxy Layer (Ag)
Barrier Layer (Ni)
Termination Finish (100% Matte Sn/SnPb–5% Pb min)

Conductive-Epoxy
Crack
Capacitor Mitigation Solutions
Level 3 Protection – High Level of Crack Protection (Hybrid Technology)

Pros
- Increased flex capability
- Floating Electrode design
- Fail Open

Cons
- Reduced capacitance in the same volume
Thermal Shock

Why is it an issue?

CTE – Coefficient of Thermal Expansion

Thermal Shock Cracks → CTE Mismatch

© 2019 KEMET Corporation
Thermal Shock
Causes – Hand Soldering

Internal Temperature Gradients
Uneven Expansion and Contraction

Hand Solder Tips
- Don’t touch capacitor termination
- Pre-heat assembly
- Larger case sizes are more sensitive
Thermal Shock
Causes – Solder Wave

PCB Travel

Solder Wave

Molten Solder

© 2019 KEMET Corporation
What is MLCC Surface Arcing?

Electrical breakdown between the two MLCC terminations or between one of the terminations and the internal electrodes of the capacitor within the ceramic body.

Influences
- Humidity
- Surface Contamination
- Creepage Distance
The Phenomenon of Surface Arcing

First Counter Electrode

Ionization of Air

Electric Field

Opposing Electrodes

Opposing Terminations

© 2019 KEMET Corporation
The Phenomenon of Surface Arcing
Surface Arcing Between MLCC Termination and the Internal Electrode Structure

Termination Surface

First Counter Electrode

Internal Electrodes
Surface Arcing Failure Modes

Terminal-to-Terminal Arcing

Terminal-to-Active Arcing

Carbon Traces

Voltage Breakdown Failures
Solutions for MLCC Surface Arcing

Surface Coatings
- MLCC Coating
 - Added by MLCC supplier
 - Additional process step
 - Critical that there is no damage to or air gap under the coating
- PCB Coating
 - Added after PCB assembly
 - Additional process step
 - Added cost
 - Cannot rework

Serial Electrode Designs
- Reduce electric field strength
 - Available capacitance in a MLCC package size is lowered
 - Allows for higher voltage capability
 - Reduces the probability of MLCC failure due to flex crack

ArcShield Designs
- Reduce electric field strength
- Reduce ionization of air at MLCC surface
- Maximizes available capacitance in a MLCC package size
The Benefits of Coating Technology

- Low K Coating
- Creepage Distance
- Ionization of Air
Issues With Coating Technologies

- Electric Arc
- Damaged Coating
Serial Electrode Design

Reduction of Electric Field

Single MLCC

- 1uF, 1000V

Five Series MLCCs

- Electric Field Distributed Across Individual MLCCs
- 1000V
- 1000V
- 1000V
- 1000V
- 1000V

\[\frac{1}{C_{eff}} = \sum \frac{1}{C_N} \]

- 0.22uF, 5000V

Single Monolithic Structure (Serial Design)

- Electric Field Distributed Across Each Serial Design
- 1000V
- 1000V
- 1000V
- 1000V
- 1000V

- 0.22uF, 5000V

© 2019 KEMET Corporation
Serial Electrode Design

High-Voltage Ceramic

Also known as “Floating Electrode” or “Cascade Electrode” designs

Capacitive Area

Capacitive Area

Separation Between Series Elements

© 2019 KEMET Corporation
“Serial” to “Shield” Design Comparison

“Serial” Design
- With capacitors (N) in series, the acting voltage on each capacitor is reduced by the reciprocal of the number of capacitors (1/N).
- Effective Capacitance is reduced:
 \[
 \frac{1}{C_{eff}} = \sum \frac{1}{C_N}
 \]

“Shield” Design
- Larger electrode area overlap A so higher capacitance while retaining high voltage breakdown.
- Thickness d between opposing electrodes increased:
 \[
 C = \frac{\varepsilon_0 K N A}{d}
 \]
KEMET ArcShield Technology

Shield Electrodes

Shield Electrodes

© 2019 KEMET Corporation
Explanation of Shield Design
Reduction of Electric Field

Terminal-to-Terminal Arcing
Standard Design
• Opposite Field extends close to terminal of opposed polarity so low energy barrier

Terminal-to-Terminal Arcing
ArcShield Design
• Opposite Field is longer distance from terminal of opposed polarity increasing size of energy barrier
Consider a Standard Design

• In a standard overlap X7R MLCC there are 3 ways of failing high voltage:
 1. Arcing between terminal and 1st electrode of opposite polarity
 2. Arcing between terminals
 3. Internal breakdown

Shield designs solve these voltage breakdown issues by:

 a. Adding a shield to prevent 1.
 b. The shield also creates a barrier to 2.
 c. Thicker actives for higher breakdown 3.
KEMET ArcShield Technology
Summary

• Permanent Protection

• No protective coating necessary

• Higher breakdown voltage capability than similarly rated devices using coating technology.

• Downsizing and board space saving opportunities.
ArcShield Key Features and Benefits

- **Patented Electrode Design**
 - Suppresses an arc-over event while increasing available capacitance

- **Permanent protection!**
 - Competitive versions often use a non-permanent surface coating

- **BME X7R Dielectric**

- **500, 630 and 1,000Vdc**

- **0603 - 2225 Case Sizes**

- **1.0nF – 560nF**

- **Flexible Termination Available**

“The World’s Smallest High Voltage MLCC’s”
Thank You