

Metallic Thermal Interface Material Testing and Selection for IC, Power, and RF Semiconductors

David L. Saums*

Principal DS&A LLC Chestnut Innovation Center, 11 Chestnut Street, Amesbury MA 01913 USA Email: dsaums@dsa-thermal.com

Tim Jensen

Sr. Product Manager Indium Corporation 34 Robinson Road, Clinton NY 13323 USA Email: tjensen@indium.com

* Presenting and Corresponding Author

3D Power Electronics Integration and Manufacturing Conference 2016 Raleigh NC USA June 13-15, 2016

Thermal Interface Materials

- Thermal interface materials (TIM) are integral for adequate heat transfer from a semiconductor source to an external environment.
 - □ Significant differentiation in application requirements has driven the need for development of many different types of TIM materials
 - □ A classification system is useful for guiding selections of materials to meet specific application requirements.
 - □ Testing and evaluation of TIMs is critical to proper selection for a specific application.
- Specialized TIM materials can be characterized as "well-performing" when measured against challenging requirements for critical applications, including:
 - □ Required thermal resistance value to meet stated heat transfer requirement
 - □ Suitability for applicable surface flatness, roughness, available clamping force
 - □ Suitability for anticipated operating environment temperature, gases, humidity
 - Required product life and reliability
 - □ Suitability for a specific application and assembly process, handling, storage.
- Thermal conductivity is not the sole criteria for selection of a TIM.

Thermal Interface Materials

- Selecting an appropriate thermal interface material:
 - 1. Degree of surface wetting achieved is critical to overall performance, to minimize contact thermal resistance at each of two contact surfaces.
 - Contact resistance dominates overall TIM resistance for many materials.
 - Driving to highest wetting and thinnest clamped or applied thickness is critical to successful TIM selection.
 - 2. Clamping force uniformly applied is intended to achieve:
 - Maximized surface wetting;
 - Thinnest possible TIM thickness (to minimize influence of bulk thermal conductivity);
 - Metal-to-metal contact for surfaces.
 - 3. Relatively good bulk thermal conductivity.
- Above statements are intended to apply for applications where low or lowest thermal resistance is required.
- These are general statements across all TIM types.

© 2016 DS&A LLC Table 1: General Functions and Categories of Thermal Interface Materials Adhesive Types		
Primary Function	Material Category	General Statements
Adhesive TIM attachment Component (heat sink) fastening Reduced thermal resistance Shock dampening	Thermally-conductive adhesives* : Pressure sensitive preforms Curable or two-part dispensed	 Generally very low thermal performance Providing adhesive attachment of a heat sink or other component No mechanical fasteners required
Minimum Rth, heat spreading, with CTE control; adhesive	TIM1 Materials: Die-Attach Adhesives used as TIM1	 Relatively high bulk thermal conductivity and low thermal resistance Applied between die and heat spreader

Notes: * Generally, available as liquid-dispensed adhesive compounds and as die-cut preforms with adhesive, one or two surfaces. Source: DS&A LLC.

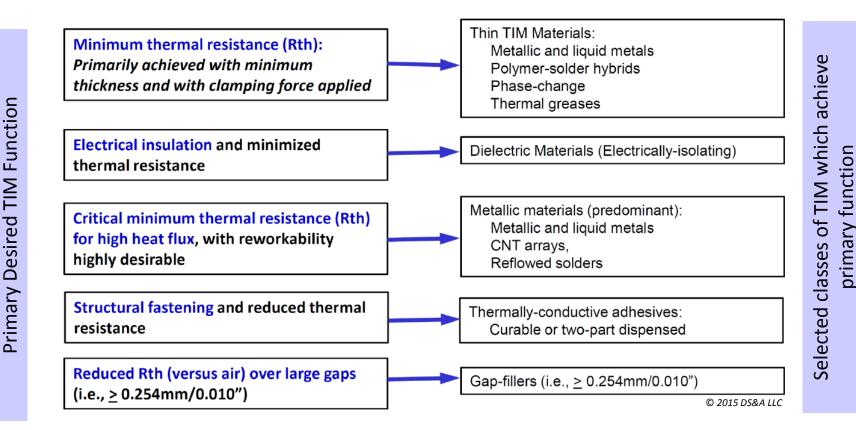
© 2016 DS&A LLC Table 2: General Functions and Categories of Thermal Interface Materials Medium Rth Thermal Performance*		
Primary Function	Material Category	General Statements
Reduce thermal resistance (O _{cs} or Rth) versus air over large gaps (i.e., ≥ 0.254mm/0.010″)	Gap-fillers	 Very thick materials to fill large air gaps between two surfaces Relatively low thermal performance due to moderate bulk thermal conductivity and significant thickness
Large-area heat dissipation, temperature control, temperature modulation	Graphite, Elastomeric Sheets	 Wide range of available materials Wide range of thermal performance, cost
Electrical insulation w/minimized thermal resistance	Electrically-Isolating	 Relatively uncommon, higher cost Lower thermal performance due to dielectric layer

Notes: Gap-filler TIMs are available as die-cut preforms and as liquid-dispensed compounds. * Generally, available with and without adhesive layer one surface, for die-cut preforms. Source: DS&A LLC.

© 2016 DS&A LLC Table 3: General Functions and Categories of Thermal Interface Materials High Rth Performance		
Primary Function	Material Category	General Statements
Minimum thermal resistance (Rth) Primarily achieved with minimum thickness and with clamping force applied	Thin TIM1/TIM2 Materials: Thermal greases Phase-change Polymer-solder hybrids, solders	 Low thermal resistance Use requires mechanical fasteners to apply consistent, constant pressure.
Minimum Rth, heat spreading, with CTE control	TIM1 Materials : Gels, Phase-change, thermal greases, solders, VA-CNT#	 Relatively high Rth and high bulk thermal conductivity Between die and heat spreader Multiple material types available for TIM1 evaluation

Notes: Thermal greases, Phase-change TIMs are available as die-cut preforms and liquid-dispensed compounds. # Development materials at present. Source: DS&A LLC.

© 2015 DS&A LLC Table 4: General Functions and Categories of Thermal Interface Materials Highest Rth Performance		
Primary Function	Material Category	General Statements
<i>Critical minimum Rth for high heat flux</i> ; reworkability highly desirable	Carbon-Based Arrays: Carbon Fiber-based Arrays: Vertically-aligned Carbon Fiber Arrays (VA-CNF) Carbon Nanotube-based Arrays: Vertically-Aligned CNT (VA-CNT)#	 Lowest Rth commercially available currently Higher cost Require mechanical fastening Lowest Rth projected, as commercial products (future) Higher Cost Require mechanical fastening
<i>Critical minimum Rth for high heat flux</i> ; reworkability highly desirable, with CTE control	Metallic Preforms, Liquid Metals	 Lowest Rth commercially available currently Variety of metal alloys and patterns available Higher cost Require mechanical fastening


Notes: Thermal greases, Phase-change TIMs are available as die-cut preforms and liquid-dispensed compounds. # Development materials at present. Source: DS&A LLC.

Thermal Interface Materials: Functions

Figure 1 – Primary TIM Function Organized by Functional Requirements

What is to be achieved as the primary TIM function?

"Well-Performing" TIMs

What is meant by "well-performing"?

- An application for a thermal interface material in a given high-performance design must be assessed against a defined list of specialized criteria in addition to bulk thermal conductivity alone.
- These specialized requirements may include, for example:
 - Higher operating temperature range;
 - Minimized thermal resistance, with 100% surface wetting;
 - Higher dielectric properties with improved thermal resistance;
 - Resistance to extreme mechanical stress due to power cycling;
 - *No* compound run-out due to temperature
 - *No* dry-out of a carrier compound due to temperature
 - No compound pump-out due to mechanical stress

"Well-Performing" TIMs

What is meant by "well-performing"?

- Prioritization of these specialized requirements may alter product thermal performance in the final TIM selection.
- Newer materials available include:
 - □ Vertically-oriented carbon fiber arrays in an organic carrier material
 - □ High bulk thermal conductivity metallic thermal interface materials
- These TIM categories require mechanical fastening for high relative clamping force to minimize thickness, maximize surface wetting, and maximize thermal performance.

"Well-Performing" TIMs

Improvements:

- In many applications, a very significant (> 5 10X) improvement must be made in TIM bulk thermal conductivity in order to impact package thermal performance.
- Carriers such as silicone oil are a primary challenge for reliability, toxicity, chemical constituents, and shelf life of existing TIM materials – but this is still not widely recognized or accepted across the electronics industry.

Metallic Thermal Interface Materials

Flat metallic foils have been used as TIM materials for more than forty years:

- Typically indium metal or copper shims
- Historically, extensive use in telcom, military, and aerospace applications for RF devices and discrete power semiconductors.

Indium Corporation introduced a family of patterned metallic foils (2008):

- Intended to address a broader range of application types with increased compliancy and no significant increase required in metal thickness.
 - Increased range of metal alloys and patterning introduced.
- "Heat-Spring[®]" patterned metallic TIMs are selected for applications based on several factors related to application specifics:
 - Alloy
 - Patterning
 - Thickness

Selection of alloys currently available:

Table 5. "Heat-Spring" Patterned Metallic TIM Alloy Selection by Thermal Conductivity		
Alloy	Bulk Thermal Conductivity (W/mK)	
Indalloy 1E	34	
100 Pb	35	
80 In/20 Sn	53	
In/Al Clad	-	
100 Sn	73	
100 ln	86	
100 Cu	395	

Data Source: G. Wilson, Indium Corporation. "Heat-Spring" is a registered mark of Indium Corporation.

Suggested maximum operating temperatures for metallic TIMs are based on the alloy and composition:

© 2015 DS&A LLC Table 6. Maximum Suggested Operating Temperature for Metallic TIMs		
Metallic TIM Composition	Suggested Maximum Operating Temperature (°C)	
Indalloy 1E	100	
80 ln/20 Sn	110	
In/Al Clad	125	
Sn, "Sn+"	200	
100 Pb	250	
100 Cu	750	

- Table shows <u>suggested values</u> for selected metals and alloys
- Application specifics of interface surfaces may affect the maximum operating temperature value selected.

Data Source: R. Jarrett, Indium Corporation



Table 7. Available Patterns for Indium Heat-Spring [®] Metallic TIMs		
Pattern Type	Configuration	
Pattern 1: Designed for interfaces with tight surface control for roughness and parallelism.		
Pattern 2: Design as a high-profile variant for surfaces with lack of parallelism or greater warpage, with 2X compressibility.		
Pattern 3: Single-sided pattern designed for clad multiple insertion applications and for selected large surface area applications.	Optional Clad Barrier Layer	

Data Source: G. Wilson, Indium Corporation. US Patent 7,593,228-B2 "Heat-Spring" is a registered mark of Indium Corporation.

Patterned Metallic TIMs: Reliability

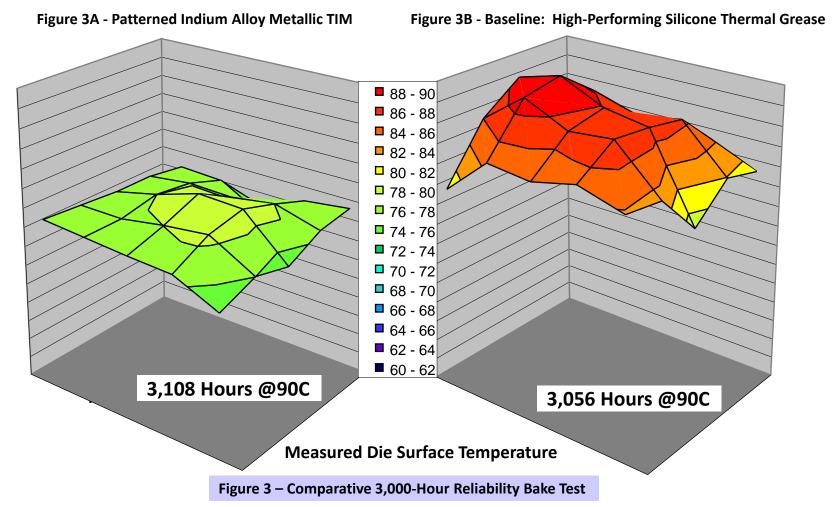
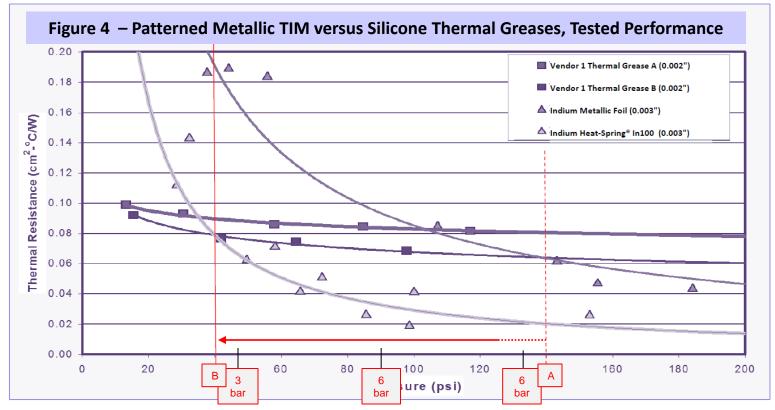


Figure 2– Thermal Resistance During Power Cycling Testing

Data source: Indium Corporation

Patterned Metallic TIMs: Reliability


Note: Measured die surface temperature at time zero was shown to be approximately equivalent. Above test data taken after 3,000-hour bake test. Increased die surface temperature for Figure 9B reflects increased thermal resistance due to dry-out of silicone oil in the tested premium silicone-based thermal grease. Data source: Indium Corporation. Die thermal test vehicles provided by Intel Corporation.

3D-PEIM Conference 2016 June 13-15, 2016 Metallic Thermal Interface Material Testing and Selection for IC, Power, and RF Semiconductors DS&A LLC © 2016 Page 18

Comparative test data for indium flat foils versus Indium Corporation "Heat-Spring" patterned In100 foil and common silicone-based thermal greases:

- Patterned metallic foils outperform thermal greases at clamping pressures >40 PSI.
- Tested improvement value of patterning versus flat foils and greases seen in force reduction (Points A to B).

Data Source: Indium Corporation. DS&A LLC Model 101 ASTM D5470-12 Test Stand. "Heat-Spring" is a registered mark of Indium Corporation.

Summary

- Thermal interface materials (TIM) are integral for adequate heat transfer from a semiconductor source to an external environment.
- Specialized TIM materials can be characterized as "well-performing" when measured against challenging requirements for critical applications.
- A range of metallic thermal interface materials have been developed and described, for specialized applications requiring performance and reliability in challenging conditions.
- Selection of a specialized TIM must be considered against a range of specific application requirements, as described.

Contact Information

DS&A LLC Chestnut Innovation Center 11 Chestnut Street Amesbury MA 01913 USA

David L. Saums, Principal E: dsaums@dsa-thermal.com Tel: +1 978 499 4990 Website: www.dsa-thermal.com

Business and product development strategy for electronics thermal management: advanced thermal materials, components, and systems.

Indium Corporation 34 Robinson Road Clinton NY 12533 USA Tim Jensen, Sr. Product Manager

E: tjensen@indium.com Tel: +1315 853 4900 Website: www.indium.com