Survey of Core Loss Test Methods

Prof. Charles R. Sullivan

chrs@dartmouth.edu

Core loss testing: difficult and important

- Nonlinear behavior requires:
 - Large-signal testing
 - Testing with bias
 - Understanding or testing the influence of the waveform shape.
- High Q (low-loss) measurements are difficult.
 - Especially at high frequency.

P

Types of core loss measurements

- Calorimetric measurements
 - Can be slow
 - Difficult, but possible, to do accurately
 - Sometimes retain accuracy where electrical measurements lose accuracy
 - Independent check on electrical measurements
- Electrical measurements
 - Conventional four-wire
 - Resonant methods

Calorimetric methods

Methods:

- Steady-state temperature rise
- dT/dt
- Heat flux sensor: ΔT across a thermal resistor: equivalent of a current sense resistor.
- Liquid coolant: flow and temperature rise

Issues:

- Dissipation in winding is included
- Isolation: insulation and/or guarding
- Lead wires

Conventional two-winding measurement

- Voltage drop on R1 doesn't appear in measurement.
- No current, and so no voltage drop, on R2.

Electrical measurements: Source options

- Sinusoidal oscillator with amplifier.
- Square-wave or other oscillator with amplifier.

- Rise time and output impedance limitations.
- Power converter, e.g. full bridge.
 - Fast edges.
 - Stiff voltage source.
 - Example: Dartmouth PSMA core loss studies:
 - Programmable pulse generator.
 - Digital control of power supply bus voltage.
 - Automatic sequence of waveforms.

Electrical measurements: Instrumentation options

- Current sensing:
 - Options:
 - Shunt
 - Current transformer
 - Rogowski coil
 - Wideband DC current probe.
 - Critical for any of these: bandwidth and delay (phase shift)
- Power instrumentation: phase shift also critical
 - Power meter
 - Oscilloscope
 - On board power calculation.
 - Data acquisition; loss calculation off line.

H

Effect of phase error and delay

- Fractional error in loss = Q Δφ where Q is quality factor of the core and Δφ is the phase error in radians.
 - Example: Q = 25, 1° phase error \rightarrow 44% error!
- Uncompensated delay translates to phase error.
 - 1 ns delay is 0.36° at 1 MHz; 3.6° at 10 MHz;
- Double jeopardy at HF (3~30 MHz frequencies:
 - Small delay becomes intolerable phase shift.
 - Low-permeability materials \rightarrow high Q.

Resonant methods

- Virginia Tech resonant-corrected two-winding measurements.
 - Reduces sensitivity to phase errors by cancelling reactive impedance and reducing effective Q.
- MIT/Dartmouth direct Q measurement.
 - Eliminates sensitivity to phase errors—measure only voltage amplitudes, ignoring phase information.
- Papers provide detailed error analysis for each.

N

 R_{w2}

Virginia Tech Resonant Methods

 R_{wI}

- V_C is used to cancel reactive component of V_2
- This version (T. Pow. Elr. April 2017):
 - Doesn't require tuning cap value.
 - Cancellation performed off line.
 - Inductive version for non-sinusoidal waveforms.

MIT resonant method

- Must be tuned to resonant peak for each measurement frequency.
- Need only amplitudes: Q = |Vout|/|Vin|
- Measurement include winding loss: model it and subtract.

Other issues in electrical measurements

- Winding capacitance
 - Current in winding capacitance is not creating H field.
- Mutual resistance
 - High-frequency winding loss includes mutual resistance terms (discussed in Modelling this afternoon).
 - Mutual resistance appears as part of measured core loss.
 - Windings can be designed for low mutual resistance.
- Temperature control: test temperature + rise during testing.
 - Pulse tests, mineral-oil bath, forced convection.

H

Types of core loss measurements

- Calorimetric measurements
- Electrical measurements
 - Conventional four-wire
 - Instrumentation options
 - Source options
 - Resonant methods
 - MIT
 - Virginia Tech

References

For additional references see reference lists in each of these.

D. Hou, M. Mu, F. C. Lee and Q. Li, "New High-Frequency Core Loss Measurement Method With Partial Cancellation Concept," in *IEEE Transactions on Power Electronics*, vol. 32, no. 4, pp. 2987-2994, April 2017.

doi: 10.1109/TPEL.2016.2573273

Y. Han, G. Cheung, A. Li, C. R. Sullivan and D. J. Perreault, "Evaluation of Magnetic Materials for Very High Frequency Power Applications," in *IEEE Transactions on Power Electronics*, vol. 27, no. 1, pp. 425-435, Jan. 2012.

doi: 10.1109/TPEL.2011.2159995

C.R. Sullivan, J.H. Harris, Testing Core Loss for Rectangular Waveforms, Phase II Final Report, 2011, Thayer School of Engineering at Dartmouth, http://www.psma.com/coreloss/phase2.pdf

A. van den Bossche and V. Valchev, *Inductors and Transformers for Power Electronics*. Taylor and Francis, 2005.

Paper at APEC 2017on winding resistance measurement:

Benedict Foo, A. Stein, C. Sullivan, "A Step-by-Step Guide to Extracting Winding Resistance from an Impedance Measurement", APEC 2017, Poster session D09, paper 1925