Survey of Core Loss Test Methods

Prof. Charles R. Sullivan
chrs@dartmouth.edu

Dartmouth Magnetics and Power Electronics Research Group

http://power.engineering.dartmouth.edu
Core loss testing: difficult and important

- Nonlinear behavior requires:
 - Large-signal testing
 - Testing with bias
 - Understanding or testing the influence of the waveform shape.

- High Q (low-loss) measurements are difficult.
 - Especially at high frequency.
Types of core loss measurements

- Calorimetric measurements
 - Can be slow
 - Difficult, but possible, to do accurately
 - Sometimes retain accuracy where electrical measurements lose accuracy
 - Independent check on electrical measurements

- Electrical measurements
 - Conventional four-wire
 - Resonant methods
Calorimetric methods

- Methods:
 - Steady-state temperature rise
 - dT/dt
 - Heat flux sensor: ΔT across a thermal resistor: equivalent of a current sense resistor.
 - Liquid coolant: flow and temperature rise

- Issues:
 - Dissipation in winding is included
 - Isolation: insulation and/or guarding
 - Lead wires
Electrical measurements

- Conventional two-winding measurement

 Theory:
 - Voltage drop on R1 doesn’t appear in measurement.
 - No current, and so no voltage drop, on R2.

\[p(t) = v(t) \cdot i(t) \]
Electrical measurements: Source options

- Sinusoidal oscillator with amplifier.
- Square-wave or other oscillator with amplifier.
 - Rise time and output impedance limitations.
- Power converter, e.g. full bridge.
 - Fast edges.
 - Stiff voltage source.
- Example: Dartmouth PSMA core loss studies:
 - Programmable pulse generator.
 - Digital control of power supply bus voltage.
 - Automatic sequence of waveforms.

$p(t) = v(t) \cdot i(t)$
Electrical measurements: Instrumentation options

- **Current sensing:**
 - Options:
 - Shunt
 - Current transformer
 - Rogowski coil
 - Wideband DC current probe.
 - Critical for any of these: bandwidth and delay (phase shift)

- **Power instrumentation: phase shift also critical**
 - Power meter
 - Oscilloscope
 - On board power calculation.
 - Data acquisition; loss calculation off line.
Effect of phase error and delay

- Fractional error in loss = $Q \Delta \phi$
 where Q is quality factor of the core and $\Delta \phi$ is the phase error in radians.
 - Example: $Q = 25$, 1° phase error \rightarrow 44% error!
- Uncompensated delay translates to phase error.
 - 1 ns delay is 0.36° at 1 MHz; 3.6° at 10 MHz;
- Double jeopardy at HF (3~30 MHz frequencies:
 - Small delay becomes intolerable phase shift.
 - Low-permeability materials \rightarrow high Q.
Resonant methods

- Virginia Tech resonant-corrected two-winding measurements.
 - Reduces sensitivity to phase errors by cancelling reactive impedance and reducing effective Q.

- MIT/Dartmouth direct Q measurement.
 - Eliminates sensitivity to phase errors—measure only voltage amplitudes, ignoring phase information.

- Papers provide detailed error analysis for each.
Virginia Tech Resonant Methods

- V_c is used to cancel reactive component of V_2
- This version (T. Pow. Elr. April 2017):
 - Doesn’t require tuning cap value.
 - Cancellation performed off line.
 - Inductive version for non-sinusoidal waveforms.
MIT resonant method

- Must be tuned to resonant peak for each measurement frequency.
- Need only amplitudes: \(Q = \frac{|V_{\text{out}}|}{|V_{\text{in}}|} \)
- Measurement include winding loss: model it and subtract.
Other issues in electrical measurements

- Winding capacitance
 - Current in winding capacitance is not creating H field.
- Mutual resistance
 - High-frequency winding loss includes mutual resistance terms (discussed in Modelling this afternoon).
 - Mutual resistance appears as part of measured core loss.
 - Windings can be designed for low mutual resistance.
- Temperature control: test temperature + rise during testing.
 - Pulse tests, mineral-oil bath, forced convection.
Types of core loss measurements

- Calorimetric measurements
- Electrical measurements
 - Conventional four-wire
 - Instrumentation options
 - Source options
 - Resonant methods
 - MIT
 - Virginia Tech
References
For additional references see reference lists in each of these.

doi: 10.1109/TPEL.2016.2573273

doi: 10.1109/TPEL.2011.2159995

Paper at APEC 2017 on winding resistance measurement: