Circuit Modeling of Winding Loss

for Inductors and Transformers

Dr. Ray Ridley

ridleyengineering.com

Why do we Need Proximity Loss Analysis?

Primary Winding 0.097 Ohm

51 Turns 3 Layers of 17 Turns 20 awg wire 0.9 mm diameter Loss = $1.985^2 \times 0.097 = 0.38 \text{ W}$

Secondary Winding 1.46 mOhm

5 Turns 5 Layers of 10 mil foil (0.26 mm) Loss = $21.73^2 \times 0.00146 = 0.69 \text{ W}$

Transformer Dissipation		
RMS Calculation	0.38	W
Proximity Fundamental	5.54	W
LTspice Simulation	8.46	W
RMS Calculation	0.69	W
Proximity Fundamental	6.02	W
LTspice Simulation	6.27	W

Proximity Loss - the Hard Way

Step 1 Define the Winding Structure

Find n, Rdc and L

Step 2 Simulate Waveforms

Step 4 Dowell's Eqs for AC Resistance

Step 3 Extract Harmonic Content – solve I²R_{ac} for each

Proximity Loss - the Modern Way

Step 1 Define the Winding Structure

Find n, Rdc and L

Step 2 Sweep Dowell's Eqs for AC Resistance

Step 3 Circuit Model to Match Predictions

Step 4

Simulate Waveforms - all Proximity Loss is Time Domain

Magnetics Winding Loss

Design Example

Proximity Loss Example

Primary 51 turns 20 awg 3 layers

Secondary 5 turns 10 mil foil

Primary Proximity Loss

$$P_{d} = b_{w} \sum_{i=1}^{n} l_{i} \frac{1}{h_{i} \eta_{i} \sigma} H_{i}^{2} \Big[\Big(1 + \alpha_{i}^{2} \Big) G_{l_{i}} - 4\alpha_{i} G_{2_{i}} \Big]$$

The H field is calculated from

$$H_i = \frac{N_i I_i}{b_w} \qquad b_w = winding \ width$$

Complex functions are needed to calculate the losses :

$$G_{\mathbf{l}_{i}} = \Delta_{i} \frac{\sinh 2\Delta_{i} + \sin 2\Delta_{i}}{\cosh 2\Delta_{i} - \cos 2\Delta_{i}}$$
$$G_{\mathbf{l}_{i}} = \Delta_{i} \frac{\sinh \Delta_{i} \cos \Delta_{i} + \cosh \Delta_{i} \sin \Delta_{i}}{\cosh 2\Delta_{i} - \cos 2\Delta_{i}}$$

The ratio of the winding layer height to skin depth is

$$\Delta_{i} = \frac{h_{cu_{i}}}{\delta} \qquad skin \ depth \ \delta = \sqrt{\frac{2}{\omega\mu_{o}\sigma\eta}}$$

$$\sigma = conductivity \qquad \mu_o = 4\pi x^2$$

Ridley Engineering

Primary Proximity Loss

$$\begin{aligned} & \left| f \right|_{L^{2}} \left(f \right) \left(f \right)$$

Secondary Proximity Loss Simulation

Ridley Engineering Contacts

Power Supply Design Center Discussion Group	Advanced discussion group for power electronics engineers. facebook.com/groups/ridleyengineering/
Power Supply Design Center Papers and Videos	Educational material with a very practical approach ridleyengineering.com/design-center-ridley-engineering.html
Power 4-5-6 with SpiceLaunch Advanced Software	Automated power supply design software Proximity models and Ltspice generation ridleyengineering.com/software-ridley/power-4-5-6/power-4-5-6-ridley.html
Power Supply Workshops Training for working engineers	Four days of hands-on magnetics and control design. ridleyengineering.com/education/analog-lab-workshop/intro.html

