MAGNETIC CORE DIMENSIONAL EFFECTS – FLUX PROPAGATION IN FERRITES

2018-03-03 - Marcin Kącki, Marek Ryłko, Edward Herbert, John Hayes, Charles Sullivan
Content

1. Introduction

2. Magnetic material comparison and permeability characteristic

3. Magnetic flux distribution experimental investigation

4. Ferrite ring core – flux distribution

5. Ferrite frame core – flux distribution

6. Conclusion and future work
Introduction – Work Motivation

A number of high frequency effects are not considered in a typical EMI choke design.

High power systems exhibit unexpected deterioration of magnetic material performance.

This work is to improve EMI choke design approach with high frequency effects.
Magnetic Materials

Magnetic material selection defines choke performance.

Material group under consideration
Large Cores Permeability Drop in Ferrite Material

Ferroxcube 3E10 material permeability as a function of frequency for various core size.

Magnetic flux undergoes skin effect similar to electric conductors.

\[f = 10 \text{ kHz} \]

\[f = 1 \text{ MHz} \]
Experimental Investigation

Four main experiments:

1. Flux distribution in the core
 Core is divided into 9 sections with wire loops, voltage of each loop is measured.

2. Flux distribution effect on the impedance
 Impedance vs. frequency in range between 1 kHz and 30 MHz is recorded.

3. Isolation of the reluctance effect from the skin effect
 Frame core is used to provide homogenous flux concentration in the core.

4. Analysis of various magnetic materials
 Investigation of the skin effect for various materials:

<table>
<thead>
<tr>
<th>Ring Core</th>
<th>Material</th>
<th>Size</th>
<th>Type</th>
<th>Permeability (Manufacturer spec.)</th>
<th>Resistivity (Ωm) (Manufacturer spec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferroxcube</td>
<td>3E15</td>
<td>50/30/16.5</td>
<td>MnZn</td>
<td>15 000</td>
<td>0.5</td>
</tr>
<tr>
<td>Ferroxcube</td>
<td>3E10</td>
<td>50/30/16.5</td>
<td>MnZn</td>
<td>10 000</td>
<td>0.5</td>
</tr>
<tr>
<td>Ferroxcube</td>
<td>3E6</td>
<td>50/30/16.5</td>
<td>MnZn</td>
<td>10 000</td>
<td>0.1</td>
</tr>
<tr>
<td>Ferroxcube</td>
<td>4S60</td>
<td>50/30/16.5</td>
<td>NiZn</td>
<td>2000</td>
<td>10^5</td>
</tr>
<tr>
<td>FairRite</td>
<td>FR78</td>
<td>105/75/15</td>
<td>MnZn</td>
<td>2300</td>
<td>200</td>
</tr>
<tr>
<td>FairRite</td>
<td>FR61</td>
<td>105/75/15</td>
<td>NiZn</td>
<td>120</td>
<td>10^9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>FR78</td>
</tr>
<tr>
<td>FR61</td>
</tr>
</tbody>
</table>
Experimental Investigation

An experimental investigation uses drilled ferrite cores. Each tested core has two vertical and one horizontal bores. Bore diameter is 0.75 mm. Vertical and horizontal bores allows to characterize 9 regions of the core cross section.

• Test I - Flux distribution in the core
 This test determine the voltage of each inner ferrite segment.

• Test II - Flux distribution effect on the impedance
 This test determine impedance and phase shift of each inner ferrite segment.
Flux Distribution in the Ring Core – Test I

Test setup:

Ring core: T50/30/16.5mm MnZn 3E10 ferrite.

\[v_1(t) = V_{1M} \sin(\omega t + \varphi_1) \]
\[v_2(t) = V_{2M} \sin(\omega t + \varphi_2) \]
\[v_X(t) = V_{XM} \sin(\omega t + \varphi_X) \]
\[v_X(t) = v_1(t) - v_2(t) \]
Flux Distribution in the 3E10 Ring Core – Test I

![Graph showing flux distribution in the 3E10 ring core.](image-url)
Flux Distribution in the 3E10 Ring Core – Test I

Graph:
- **Red line:** FEA Simulation
- **Gray line:** Experimental

- **Y-axis:** Magnetic Flux ratio
- **X-axis:** Frequency (kHz)

Key points:
- The magnetic flux ratio decreases as frequency increases.
- The FEA simulation and experimental results show a similar trend but with some variations.

Diagram:
- Visual representation of the flux distribution in the 3E10 ring core.

Notes:
- The graph illustrates the magnetic flux distribution across different frequencies.
- The data points for both simulations and experiments are plotted to show the comparison and agreement.

Title:
- Flux Distribution in the 3E10 Ring Core – Test I
Flux skin depth depends on material conductivity, permeability and frequency.
Flux Distribution Effect on the Impedance – Test II

Ring core:
T50/30/16.5mm
MnZn 3E10 ferrite.

Impedance measurement test setup.
Flux Distribution Effect on the 3E10 Ring Core Impedance - Test II

Impedance and phase frequency characteristic.
Frame core is used to mitigate flux concentration effect in order to expose core skin effect.

Frame core dimensions: 106/65/15mm
MnZn ferrite material: FR78
Flux Distribution in the FR78 Frame Core – Test I

Magnetic Flux ratio

Frequency (kHz)
Flux Distribution in the FR78 Ring Core – Test 1

Magnetic Flux ratio vs Frequency (kHz)

- $\phi X/\phi 1$
- $\phi X/\phi 2$
- $\phi X/\phi 3$
- $\phi X/\phi 4$
- $\phi X/\phi 5$
Flux Distribution Effect on the Frame Core FR78 Impedance – Test II

Impedance and phase frequency characteristic.
Flux Distribution Effect on the Ring Core FR78 Impedance – Test II

Impedance and phase frequency characteristic.

![Graph showing impedance and phase angle frequency response for sections 1, 3, and 5.](image)
• Magnetic material selection is a key for successful EMI filter design and enables to achieve desired attenuation characteristic
• Core size has strong effect on filter frequency characteristic
• Ferrite material is a subject of core skin effect that results in frequency depended magnetic flux non-uniform distribution
• Core material conductivity and permeability influence the skin depth
• Non-uniform flux distribution has an effect on impedance and phase characteristic of each core segment
• FEA modeling is in line with experimental results
Acknowledgement

> Ferroxcube Polska Eastern Europe
> R&D support and open discussion
> Support with samples for research, short delivery times and involvement

> Fair-Rite Products Corp.
> Machining of the frame core
> Precise drilling
> Samples for research were provided under the sponsorship of PSMA

> PSMA
> Especially Edward Herbert for his enthusiasm and support and valuable discussion on magnetics
> PSMA Comitee for support and financial participation in the research
Future work

• Matematical model development based on evaluation of various size
 o Ring cores
 o Frame cores
• Simulation model improvement for better accuracy at higher frequency
 o Permittitivity vs. frequency
• Do this research can be applied directly to the design rules? How presented approach contributes to standardized test for magnetic material properties provided by magnetic core manufacturers?

REFERENCES:
Demonstrator

- Results for various materials
- Test system
- Tested samples