Evaluation of the PCB-embedding technology for a 3.3 kW converter IWIPP 2019, Toulouse, France

Rémy CAILLAUD¹, Johan LE LESLÉ²,Cyril BUTTAY¹, Florent MOREL¹, Roberto MRAD², Nicolas DEGRENNE², Stefan MOLLOV²

¹Laboratoire Ampère, Lyon, France ²Mitsubishi Electric Research Centre Europe, Rennes, France

24th of April, 2019

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

Power electronics – Areas for Progress

- Excellent active devices are now available (SiC, GaN)
- Many topologies introduced over the years;
 - Recent changes: multi-cellular structures
- Integration and Packaging are the main areas for progress [1, 3, 4, 5]
 - Reduce size and circuit parasitics, improve thermal management...
 - Manage increased interconnection density

Why Embedding?

- Optimize thermal management
 - Heat sources closer to heatsink
 - Dual side cooling
- Improve performance
 - Shorter interconnects
 - Lower inductances
- Reduce size
 - Use substrate volume
- Manage complex interconnects
 - Batch process
 - Take advantage of PCB design tools

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

Converter topology

- Bidirectionnal, Power Factor Converter for 3.3 kW applications
- Designed through an optimization procedure [6, 7]
 - Based on SiC power devices
 - 180 kHz switching frequency
 - 4 interleaved cells
- Discussed here: PFC cell

Physical Structure

Thin PBC (1 mm) for bare dies

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

Test Coupons – power devices

For SiC dies

- Good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact 500×800 µm²
- ► Good electrical perf.
 - No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)
 - Consistent R_{DSm} (80 mΩ)

Test Coupons – power devices

For SiC dies

- Good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²

Good electrical perf.

- No change In V_m
 Low leakage current (max 1.6 nA @ 1200 V)
 Very good yield
 (97% on 44 dies)
- Consistent R_{DSm} (80 mΩ)

For SiC dies

- Good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - ▶ No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)
 - Consistent R_{DSon} (80 mΩ)

Test Coupons – power devices

For SiC dies

- Good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - ► No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)
 - Consistent R_{DSon} (80 mΩ)

11/23

Test Coupons – power devices

For SiC dies

- Good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - ► No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)
 - Consistent $R_{DS_{on}}$ (80 m Ω)

29 mm			
20 mm PCL: 22/06/17 See: 0 0 0 000 6	02 18/11H 300 300 300 300 300 300 300 300 300 30		
Coupon	R _{DSon}		
#1	88.7 mΩ		
#2	77.9 mΩ		
#3	82.2 mΩ		
#4	83.3 mΩ		
#5	86.3 mΩ		
#6	89.1 mΩ		
#7	88.9 mΩ		
#8	84.2 mΩ		

11/23

Test Coupons – SMD Diodes

Test on packaged diodes:

- ▶ 600 V, 1 A diode for bootstrap supply rectifier, SMF case
- ▶ 4.7 V and 15 V zener diodes for voltage regulation, SOD123 case
- No failure detected

Ceramic capacitors :

- 330 nF, 500 V, X7R, 1812 case (decoupling)
- ► 56 pF, 500 V, C0G, 1206 case (increase *C*_{oss})
- Leakage current used as indicator of health (would increase with cracks)

Capacitor type	Leakage current (@500 V)	
330 nF non embedded (ref)	107.0	nA
330 nF embedded (#1)	83.0	nA
330 nF embedded (#2)	96.0	nA
330 nF embedded (#3)	106.0	nA
56 pF non embedded (ref)	1.02	nA
56 pF embedded (#1)	2.64	nA
56 pF embedded (#2)	0.81	nA
56 pF embedded (#3)	0.86	nA
56 pF embedded (#2)	0.86	nA

Large diffs in inductance values

- Some cores broken (3/8)
- ► No clear correlation between elec. behav. and core condition

Embedded inductors

Large diffs in inductance values

- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Embedded inductors

Large diffs in inductance values

- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Good perspectives on process

- Many cores intact
- Good cavity filling
- Reducing cavity size may improve yield and centering

Embedded inductors

Large diffs in inductance values

- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Good perspectives on process

- Many cores intact
- Good cavity filling
- Reducing cavity size may improve yield and centering

Unexpected increase in resistance

- R_{AC} at 180 kHz is 10 $\times R_{DC}$
- Analysis ongoing

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
 TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
 TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

PFC inductor (Thick)

- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

Converter Cell Assembly

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

Converter Cell Assembly

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- ► Final cell dimensions: 7 × 7×3.5 cm³

Full converter assembly

- ▶ 4 PFC cells for a full converter
- DC capacitor bank for test only
- 4-stage EMC DM filter
- PFC: 28x7x5 cm³
- DM filter: 28x14x0.5 cm³

Operation of the PFC converter

- ► 4 interleaved PFC cells (target power 4×825 W=3.3 kW)
- Operation at reduced power because of losses in inductors
 - Current unbalance because of differences in inductor values

Introduction

Presentation of an embedded converter

Technology Evaluation

Operation of the PFC converter

Conclusions

Conclusions – Exploiting the PCB Embedding

"All-embedded", interleaved PFC designed

- includes dies, driver, inductors
- Very good production yield
- Only issue: embedded inductors
- Full power tests ongoing
 - Tested at higher power with planar inductors
 Frequency behavior of embedded inductor under investigation
- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools

Conclusions – Exploiting the PCB Embedding

"All-embedded", interleaved PFC designed

- includes dies, driver, inductors
- Very good production yield
- Only issue: embedded inductors
- Full power tests ongoing
 - Tested at higher power with planar inductors
 - Frequency behavior of embedded inductor under investigation

Next step: better use of embedding

- Keep some components on the surface
- Improve design for manufacturing
- Improve design tools

Conclusions – Exploiting the PCB Embedding

"All-embedded", interleaved PFC designed

- includes dies, driver, inductors
- Very good production yield
- Only issue: embedded inductors
- Full power tests ongoing
 - Tested at higher power with planar inductors
 - Frequency behavior of embedded inductor under investigation
- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools

Bibliography I

- [1] J. W. Kolar, F. Krismer, and H.-P. Nee, "What are the big challenges in power electronics?," in *Proceedings of CIPS*, (Nüremberg), 2014.
- [2] L. Kerachev, A. Andreta, Y. Lembeye, and J.-C. Crébier, "Generic approach for design, configuration and control of modular converters," in *International Exhibition* and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, (Nuremberg), pp. 212 – 219, VDE Verlag, May 2017.
- [3] J. D. van Wyk and F. C. Lee, "On a future for power electronics," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 1, no. 2, pp. 59–72, 2013.
- [4] S. C. Ó Mathúna, P. Byrne, G. Duffy, W. Chen, M. Ludwig, T. O' Donnel, P. McCloskey, and M. Duffy, "Packaging and integration technologies for future high-frequency power supplies," *IEEE transactions on industrial Electronics*, vol. 51, no. 6, pp. 1305 – 1312, 2004.
- [5] S. Seal and H. A. Mantooth, "High performance silicon carbide power packaging—past trends, present practices, and future directions," *Energies*, vol. 10, no. 3, 2017.
- [6] J. Le Lesle, R. Caillaud, F. Morel, N. Degrenne, C. Buttay, R. Mrad, C. Vollaire, and S. Mollov, "Multi-objective optimisation of a bidirectional single-phase grid connected AC/DC converter (PFC) with two different modulation principles," in *ECCE*, Proc. of the IEEE Energy Conversion Congress and Exposition, (Cincinnation OH, United States), Oct. 2017.

[7] R. Caillaud, C. Buttay, R. Mrad, J. Le Lesle, F. Morel, N. Degrenne, and S. Mollov, "Comparison of planar and toroidal PCB integrated inductors for a multi-cellular 3.3 kW PFC," in *Integrated Power Packaging (IWIPP), 2017 IEEE International Workshop On*, (Delft, Netherlands), pp. 1–5, IEEE, Apr. 2017.

Thank you for your attention.

cyril.buttay@insa-lyon.fr

This work was funded by Mitsubishi Electric Research Centre Europe and the French Agency for Technology and Research (ANRT).

