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q Context of HV in power electronics and isolation issues
- Passivation of power devices
- Encapsulation of power modules

q Electrical degradation in polymers at HV
- Space charge
- Breakdown

q Polymer dielectric reinforcement using nanostructuration
- Polyimide-based nanocomposites
- Epoxy-based nanocomposites

q New field grading materials concepts using electrophoresis
- Epoxy-based composites with permittivity gradient
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Context: Power conversion

Flashover of the passivation
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High field consequences on passivation:
M.-L. Locatelli et al., Proc. of EPE, 2003.

Impact of SiC components on field:



	

4Context: Power conversion
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At the ‘triple point’:
à Field reinforcement due to the tip geometry and permittivity difference

High field consequences on encapsulation:
Fabian et al, Proc. IEEE IAC, 2005.

Z. Li et al., IEEE TDEI, 2010.
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6Electrical degradation in polymers
6

Field reinforcement à Partial discharges à Aging by erosion à Breakdown

General scheme

No cavity

Nano-voids

Microcavities

Treeing

Breakdown

Degradation reaction – molecular scale
Space charge
Hot carrier injection, recombination

Growth of vacuoles
Electrostatic forces due to charges
Charge mean free path increase
Solid-gas interface

Cavity surface erosion by PD
Chemical degradation due to discharges
UV, reactive species, charges
Thermal effects, …

Propagation
Plasma energetic species
Erosion of the dielectric
Electromechanical forces
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Injection of electrons from the cathode
à Reinforcement of internal field
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PEA method under DC voltage:

Space charge in epoxy

Charge injection

Cathode Anode Cathode Anode

Albani, Master thesis, Laplace, 2018.



C.D. Pham et al., Proc. CEIDP, 2011.
M.-L. Locatelli et al., IEEE TDEI, 2017.

Injection and formation of heterocharges at ‘metal / PI’ interfaces 
à Reinforcement of internal field
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LIMM method under short circuit:

Space charge in polyimide
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Breakdown mechanism
Diaham et al, IEEE TDEI, 2010.

Diaham et al, Appl. Phys. Lett., 2017.Thermal breakdown in polyimide :

Thermal runaway from a threshold field > 1 MV/cm
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Nitride nanoparticles

Boron nitride (BN) Silicon nitride (Si3N4)

Aluminum nitride 
(AlN)

20 nm

40 nm
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Diaham et al, J. Phys. D.: Appl. Phys., 2015.
Diaham et al, Proc. IEEE NMDC, 2017.Polyimide-based nanocomposites: 
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Nanoparticules BN

Nanoparticules Si3N4

DC conductivity

Decrease of Eact à Changing in the conduction mechanism with small BN
Smaller Si3N4 allows decreasing down to 2 orders of magnitude more

PI/w-BN

PI/Si3N4

PI



Breakdown field improvement with decreasing conductivity
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DC breakdown

Relation between ‘breakdown/conductivity’: 
Diaham et al, IEEE TDEI, 2019.
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Epoxy nanocomposites

Significant improvement of the dielectric strength with NPs

Weibull statistics of breakdown:

Origin ???

Albani, Master thesis, Laplace, 2018.
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Epoxy nanocomposites

Lower internal field in nanocomposites compared to neat epoxy

Space charge/internal field:

Cathode Anode Cathode Anode

Heterocharge formation

Albani, Master thesis, Laplace, 2018.
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Field Grading Materials (FGM)

(Di)electrophoresis composite tailoring:
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Application to field grading in power modules

Up to 60% of attenuation of the maximum field for FGM

FEM modelling of field grading efficiency
Diaham et al, Proc. ICD, 2018.
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Breakdown voltage is twice higher for FGM compared to neat epoxy
However no bulk BD of the FGM à Validation of field grading efficiency

Epoxy Composites FGM
AC breakdown voltage

Diaham et al, Proc. ICD, 2018.
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Ø New applications in PEà Trend towards higher working voltage

Ø Thermosetting polymers interesting … but some electrical limitations

Ø Charge injection and space charge formationà Field distortion / Degradation

Ø Polymer-based nanocompositesà Way to improve the dielectric properties

Ø Innovative FGM composite concepts tailored by electrophoresis

à In-situ tailoring of FGM with auto-adaptative ε’-gradient

à FGM efficiency paves the way of a new field grading approach

Ø Such material improvements will afford better HV system performances and
reliability
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