

Laplace

Electrical Polymeric Insulation for Power Electronics: Physical Limits and New Tailored Composite Design Concepts

Sombel Diaham PhD, Associate Professor, University of Toulouse

24-26 April 2019 – Toulouse, France

Outline

□ Context of HV in power electronics and isolation issues

- Passivation of power devices
- Encapsulation of power modules

Electrical degradation in polymers at HV

- Space charge
- Breakdown

□ Polymer dielectric reinforcement using nanostructuration

- Polyimide-based nanocomposites
- Epoxy-based nanocomposites

□ New field grading materials concepts using electrophoresis

- Epoxy-based composites with permittivity gradient

Context: Power conversion

M.-L. Locatelli et al., Proc. of EPE, 2003.

High field consequences on passivation:

Cathode

Impact of SiC components on field:

Flashover of the passivation

Context: Power conversion

At the 'triple point':

→ Field reinforcement due to the **tip geometry** and **permittivity difference**

Outline

5 Laplace

□ Context of HV in power electronics and isolation issues

- Passivation of power devices
- Encapsulation of power modules

Electrical degradation in polymers at HV

- Space charge
- Breakdown

Polymer dielectric reinforcement using nanostructuration

- Polyimide-based nanocomposites
- Epoxy-based nanocomposites

New field grading materials concepts using electrophoresis
Epoxy-based composites with permittivity gradient

Electrical degradation in polymers

6 Laplace

General scheme

Field reinforcement \rightarrow Partial discharges \rightarrow Aging by erosion \rightarrow Breakdown

PEA method under DC voltage:

Albani, Master thesis, Laplace, 2018.

Injection of electrons from the cathode → Reinforcement of internal field

Space charge in polyimide

C.D. Pham et al., Proc. CEIDP, 2011.

LIMM method under short circuit:

Injection and formation of heterocharges at 'metal / PI' interfaces Reinforcement of internal field

Breakdown mechanism

Diaham et al, IEEE TDEI, 2010.

Thermal breakdown in polyimide :

Thermal runaway from a threshold field > 1 MV/cm

Outline

10 Laplace

Context of HV in power electronics and isolation issues

- Passivation of power devices
- Encapsulation of power modules

Electrical degradation in polymers at HV

- Space charge
- Breakdown

□ Polymer dielectric reinforcement using nanostructuration

- Polyimide-based nanocomposites
- Epoxy-based nanocomposites

New field grading materials concepts using electrophoresis
Epoxy-based composites with permittivity gradient

Nitride nanoparticles

Boron nitride (BN)

h-BN (120 nm)

h-BN (60-100 nm)

5<u>0 nm</u>

t-BN (95 nm)

w-BN (35 nm)

Silicon nitride (Si₃N₄)

20 nm

Aluminum nitride (AIN)

40 nm

Diaham et al, J. Phys. D.: Appl. Phys., 2015. Diaham et al, Proc. IEEE NMDC, 2017.

Decrease of $E_{act} \rightarrow$ Changing in the conduction mechanism with small BN Smaller Si₃N₄ allows decreasing down to 2 orders of magnitude more

Diaham et al, IEEE TDEI, 2019.

Weibull statistics of breakdown:

Albani, Master thesis, Laplace, 2018.

Significant improvement of the dielectric strength with NPs

Albani, Master thesis, Laplace, 2018.

Space charge/internal field:

Heterocharge formation

Lower internal field in nanocomposites compared to neat epoxy

Outline

16 Laplace

Context of HV in power electronics and isolation issues

- Passivation of power devices
- Encapsulation of power modules

Electrical degradation in polymers at HV

- Space charge
- Breakdown

Polymer dielectric reinforcement using nanostructuration
Polyimide-based nanocomposites
Epoxy-based nanocomposites

□ New field grading materials concepts using electrophoresis

- Epoxy-based composites with permittivity gradient

(Di)electrophoresis composite tailoring:

Application to field grading in power modules

FEM modelling of field grading efficiency

Diaham et al, Proc. ICD, 2018.

Up to 60% of attenuation of the maximum field for FGM

Breakdown voltage is twice higher for FGM compared to neat epoxy However no bulk BD of the FGM \rightarrow Validation of field grading efficiency

Diaham et al, Proc. ICD, 2018.

- > New applications in PE \rightarrow Trend towards higher working voltage
- > Thermosetting polymers interesting ... but some electrical limitations
- ➤ Charge injection and space charge formation → Field distortion / Degradation
- \succ Polymer-based nanocomposites \rightarrow Way to improve the dielectric properties
- Innovative FGM composite concepts tailored by electrophoresis
 - \rightarrow In-situ tailoring of FGM with auto-adaptative ε '-gradient
 - \rightarrow FGM efficiency paves the way of a new field grading approach
- Such material improvements will afford better HV system performances and reliability

Acknowledgement:

Marie-Laure Locatelli Zarel Valdez-Nava Lionel Laudebat Thierry Lebey Laurent Berquez Didier Marty-Dessus Gilbert Teyssèdre Sorin Dinculescu Benoît Schlegel Nicolas Guibert Céline Combettes François Saysouk, PhD Thesis (2010-2014) Cong-Duc Pham, Post-Doc (2010-2013) Louis Lévêque, PhD Thesis (2013-2016) Guillaume Belijar, PhD and Master Thesis (2013-2016) Trong Trung Le, Post-Doc (2016-2017) Riccardo Albani, Master Thesis (2017-2018) Imadeddine Benfridja, Master Thesis (2017-2018)

JCJC (Young Researchers Program)

