

Developments for Copper-Graphite Composite Thermal Cores for PCBs for High-Reliability RF Systems

David L. Saums, Principal, DS&A LLC, Amesbury MA USA Email: dsaums@dsa-thermal.com Robert A. Hay, Senior Research Engineer, Parker Hannifin CSS Division, North Haven CT USA Email: robert.hay@parker.com

Summary: A copper-graphite composite was selected from different candidate materials tested to determine suitability as a direct replacement of heavy copper thermal planes within high-reliability military-aerospace multilayer PCBs intended to mount and dissipate high heat loads from RF power semiconductors, with significant improvements in CTE matching for the high heat flux components. A manufacturing development process was also undertaken to develop very thin flat panels of this copper-graphite composite, required to meet IPC 6012c and other PCB industry-standard processing and manufacturing requirements. Testing with PCB manufacturing was conducted by a major mil/aero PCB manufacturer; complex multilayer PCBs were fabricated, tested, and qualified for series production. Important target requirements for CTE value, thermal conductivity, thickness, panel size, minimized warpage, and processing were met.

1. Program Development Goals

(Program goals set by Naval Surface Weapons Center, US Navy; and Lockheed Martin, USA)

3. Empirical Results for PCB Fabrication with Cu-Graphite Thermal Cores (PCB fabrication, testing, and process analysis conducted by TTM Technologies, Inc., USA)

Goals – Thermal Core PCB Development for Thermal Management and Reliability

Goals for development programs for thermal control within PCBs:

- 1. Evaluate alternative materials which could replace heavy copper core layers for PCBs.
- Develop manufacturing process to yield "drop-in-place" thermal core formats for PCB fabrication, per IPC 6012(C) and related standards:
 - Dimensional requirements (X-Y)*
 - Thickness requirements interim and final are critical to successful development
- 3. Fabricate prototype thermal core PCBs for performance testing and analysis:
 - Feature capabilities (through-holes, blinds, compatibility with PCB dielectrics)
 - Flatness
 - Metallization
 - Potential for warpage control (due to moisture absorption) in handling and storage of core materials and subsequent PCB fabrication processing.
 - Potential for actual PCB weight reduction versus current copper core PCBs.
- 4. Develop PCB thermal performance comparative models and test data to examine:
 - Calculated Effective Thermal Conductivity values
- 5. Test and evaluate electrical and thermal performance:
 - Thermal and CTE matching characteristics
 - RF performance for attached RF devices
 - Solder attach and low-ignition voltage solder alternatives (such as Nanofoil[®]) as joining materials and processes for high heat flux device attachment.
- Evaluate cost:
 - Matching existing standardized PCB fabrication processes is a major cost driver.*
 - Identify potential cost reduction targets and methods to achieve this.
- Notes: *Industry requirements determined by existing PCB fabrication process equipment.

CTE-Matched Thermal Core PCB Development Materials: Balanced PCB Stack

Development of new manufacturing processes enabling new thermal core materials:

 Development PCB fabrication and analysis by TTM included drilling, plasma etch, other processes to prove out PCB industry standard production process methods.

Cu-MetGraf 7-300 (0.51mm/0.0200") copper-graphite composite layer

Process step and analysis: Drill 0.90mm (0.0354") and 0.25mm (0.0098") diameter holes

- Balanced PCB stack
- PCB development core materials must meet process requirements of MIL-P-55110 (IPC-6012).

4. Empirical Results for PCB Effective Thermal Conductivity

(Modeling and testing conducted by Rockwell Collins Inc., USA)

Empirical Data – Effective Thermal Conductivity

Thermal conductivity test fixture and sample construction:

	Thermal Conductivity Test Results	
500 -		
450 -	1	
400 -		
350	1	
300 -		

IPC 6012(C)) and associated standards are published by IPC, Bannockburn IL USA. Website: www.ipc.org

2. Candidate Materials Evaluated

(Materials property testing, analysis, and selection conducted by Lockheed Martin, USA)

Material	Thermal Conductivity (W/mK)	CTE (ppm/°C)	
MMCC Cu-MetGraf™ 7-300	X-Y: 285-300 Z: 210	X-Y: 7.0 Z: 16.0	Selected
Ероху	~0.5	~55	
Graphite/Epoxy (+0.5 oz. Cu each side)	XY: 175 Z: ~1	XY: 4.0 – 6.5 Z: ~55	
OFHC Copper	390	17	

3. Analysis of Selected Copper-Graphite Sheet within PCB

(Fabrication, testing, and finished PCB analysis for balanced and unbalanced PCBs conducted by TTM Technologies, USA)

CTE-Matched Thermal Core PCB Development Materials: Balanced PCB Stack

Development of new manufacturing processes enabling new thermal core materials:

- This example is <u>one</u> of several PCBs manufactured and analyzed: 4-, 10-, 20-, 21-layer PCBs
- Example of a balanced thermal core PCB materials stack:

1	Тор	1oz	
	0.25mm (0.010") Core (Nelco - 29)		
2		1oz	
	Prepreg 3-1080 (Nelco -29)		
	Cu-MetGraf 7-300 copper-graphite composite layer		Selected Thermal Core Material
	Prepreg 3-1080 (Nelco -29)		
3		1oz	
	0.25mm (0.010") Core (Nelco - 29)		
4	Bottom	1oz	

Empirical results - effective thermal conductivity:

- Average thermal conductivity test value for fabricated thermal core PCB samples: 89 W/mK;
- Calculated effective thermal conductivity for Layer 2 (Cu-MetGraf 7-300): ~290 W/mK.

Note: Error Bars: <u>+</u> 1 standard deviation. (Inner and outer insulation for test fixture removed for photograph.) Data source: R. Wilcoxon, Rockwell Collins Inc., Advanced Technology Center October 29, 2012

5. Results

Solution: Constraining Core Thermal Materials for PCBs

Parameter or Property		Goal o	or Requirement	© 2016 DS&	AUC Cu-MetGi Value		
СТЕ	Lower value range, appropriate for SiC, GaN Packaged or bare die				7.0 ppm Yes	7.0 ppm/°C Yes	
Thermal Conductivity	Relatively high versus existing CTE-matched materials Requirement: > 250 W/mK Isotropic or near-isotropic if possible				Z: 225 W	X-Y: 287 W/mK Z: 225 W/mK Near-isotropic	
Density	Reduced versus existing CTE-matched materials Requirement: 30+% reduction				6.0 g/o	6.0 g/cc	
Young's Modulus	Relatively stiff, with reduced or no warpage in fabricated PCB				75.8 GI	75.8 GPa	
Fabrication	Demonstrated compatibility, standard PCB fabrication processes "Drop-in-place" replacement of heavy copper layer Suitable for microdrilling, microvia processes			Yes Yes Yes	Yes		
Manufactured Panel Size	Requirement: 30.5cm x 45.7cm (minimum)				Yes, demon	Yes, demonstrated	
Manufactured Panel Thickness	Initial requirement: 0.50mm (maximum) Stretch requirement: 0.25mm			· · · · · ·	Yes, completed Yes, completed		
Manufactured Cost	Reducible with future manufacturing process cost improvement program			ram Yes, now un	Yes, now underway		
Availability	Suitable for IPC-standard PCB fabrication facilities globally Not subject to legislative restrictions			Yes Yes			
Parameter or Property	Molybdenum ¹	Cu-Mo-Cu ¹	25Cu/50Mo/ 25Cu ²	20Cu/60 Invar/ 20Cu ²	Cu-Graphite (Cu-MetGraf 7-300)	Cu1	
CTE (ppm/°C)	5.0	6	7.9	X-Y: 6.0 Z: 7.7	7.0	17	
Thermal Conductivity (W/mK)	X: 140 Y: 142	170-182	X-Y: 268 Z: N/A	X-Y: 164 Z: 22	X-Y: 287 Z: 225	385	
Density (g/cc)	10.2	9.9 - 10.0	9.6	8.5	6.1	8.9	
Young's Modulus	330	280	220	135	75.84	120-13	

Overall PCB thickness: 2.31mm (0.091")

Note: Please see manuscript for complete set of material and processing descriptions and references.