

Design for Additive Manufacturing of Wide Band-Gap Power Electronics Components

ERCAN M. DEDE, MASANORI ISHIGAKI, SHAILESH N. JOSHI, & FENG ZHOU

TOYOTA RESEARCH INSTITUTE OF NORTH AMERICA

JUNE 13, 2016

INTERNATIONAL SYMPOSIUM ON 3D POWER ELECTRONICS INTEGRATION AND MANUFACTURING (3D-PEIM)

Acknowledgements

National Renewable Energy Lab

- Mr. Kevin Bennion
- o Dr. Gilbert Moreno
- o Dr. Sreekant Narumanchi

• Purdue University – CTRC

- o Professor Suresh V. Garimella
- o Dr. Matthew J. Rau

Toyota Central R&D Labs

o Dr. Tsuyoshi Nomura

• Toyota Motor Corporation

o Mr. Tomohiro Takenaga

Toyota Technical Center

o Dr. Yan Liu

Wolfspeed

- o Dr. Kraig J. Olejniczak
- o Dr. Brandon Passmore

ΤΟΥΟΤΑ

Outline

Overview of Research Group

Motivation for 3D Integration

O Why Explore Additive Manufacturing?

Applications for Additive Manufacturing

- Circuit-Level Concepts
- System-Level Concepts
- Future Opportunities & Challenges
- Conclusions

References

Overview of Research Group

Motivation for 3D Integration

Current Power Control Unit (PCU) architecture – compact, highly integrated packaging

Ref.: Shimadu, H., et al., EVTeC 2016

DC-DC Converter with High Frequency Integrated Magnetics

4th Gen. PCU

Ref.: Okamoto, K., et al., Denso Tech. Rev. 2011

Power Card Structure with Interleaved Double-Side Cooling

ΤΟΥΟΤΑ

Why Explore Additive Manufacturing?

- Core ideas behind Additive Manufacturing (AM)
 - $_{\odot}$ Expand design space \rightarrow
 - Enhance integration & create new function
 - o "...multimaterial..."
 - o "...lightweight structures..."
 - o "...internal cooling passages..."
 - o "...unparalleled geometric complexity..."
 - o "...functionally grade material compositions..."

Ref.: Rosen, D.W., et al., J. Mech. Design 2015 (Guest Editorial, Special Issue: Design for Additive Manufacturing)

Above characteristics highly sought in future power-dense wide band-gap (WBG) electronics systems

Applications for Additive Manufacturing

CIRCUIT-LEVEL CONCEPT - CURRENT SENSOR

High Frequency Passives

 \circ High operational frequency expected with WBG devices \rightarrow Paradigm shift in magnetics design

Sheet-Wound Coil Concept

40

Sheet-Wound Coil Fabrication

• Metal plating of 3D AM bobbin for structure realization

Fewer turns fabricated with greater precision enables high frequency, accuracy measurement in compact space

Applications for Additive Manufacturing

CIRCUIT-LEVEL CONCEPT - LC RESONANT TANK

Extension to LC Resonant Tank

Integrate resonant capacitance into structure

• Magnetic flux "packed" inside due to shielding effect, while capacitance conserves magnetic flux

3D Isometric View & Equivalent Circuit

Transparent & Sectioned Views

Extension to LC Resonant Tank

$\,\circ\,$ Application to air core transformer

• Improve power transfer from primary to secondary coil with air core (i.e. no traditional ferrite core)

LC Resonant Tank Fabrication

Direct Metal Deposition (DMD) 3D printing

 $\,\circ\,$ Fabricated using three components to properly construct air gap $\rightarrow\,$

Multi-material (metal-plastic) 3D printer technology required for one-piece construction!

Applications for Additive Manufacturing

SYSTEM-LEVEL CONCEPT - AIR COOLING

Air-Cooled Heat Sink Design

Structural optimization plus AM applied to study performance limits
Optimization for steady-state heat conduction plus side-surface convection

Movie of Example 2-D Structural Optimization Design Evolution

3D Topology Optimization Result

Quarter-Symmetry Point Cloud Data

Synthesized Solid Model CAD Geometry

AlSi12 Rapid Prototype

Extension to 3D Design

Variable geometry pin fin design obtained to maximize heat transfer

ΤΟΥΟΤΑ

Heat Sink Performance Evaluation

Applications for Additive Manufacturing

SYSTEM-LEVEL CONCEPT - LIQUID COOLING

Modular Liquid Cooling for Power Electronics

• Manifold microchannel (MMC) system for high performance single-phase liquid cooling

Transparent Views with Flow Operation

ΤΟΥΟΤΑ

Modular Liquid Cooling for Power Electronics

Cold plate flow configurations considering three power modules

Modular Cold Plate AM Rapid Prototype

• Polymer prototype manifold system with snap-fit connections

Disassembled Cold Plate Showing Two AM Manifold Sections

3D AM Optimized MMC Heat Sink Concept

Insert on Top of Fin Structure

Liquid Cold Plate Design – Another Quick Note

Applications for Additive Manufacturing

SYSTEM-LEVEL CONCEPT - TWO-PHASE COOLING

Two-Phase Cooling for Enhance Performance

O High power density systems → single-phase liquid cooling reaching fundamental limit
O Design of high performance two-phase cooling technology

Operational Concept for Two-Phase Jet Impingement Cooling

<u>— 400 µm</u>

Porous Structure Detail

AM AlSi12 Heat Spreader

Cold Plate with Vapor Extraction Manifold

Performance Characteristics

• Flow visualization and understanding heat transfer and pressure drop comparison

Two-Phase Jet Impingement Movie – Approaching Critical Heat Flux (CHF)

Compact Manifold Design

• Exploit optimization of single-phase inlet manifold for size reduction of cold plate

Design Verification by Simulation

AM Rapid Prototype for Design Visualization

Future Possibilities – Target Surface Design

• Opportunity for structural design optimization as two-phase conjugate simulation evolves

Future Possibilities – Target Surface Design

• Example optimization study for heat conduction plus side-surface convection (following air cooling study)

• Assume *inverse* spatial heat transfer coefficient distribution is known *a priori*

Movie of Evolution of Surface Structure \rightarrow AM Possibility?

Challenges & Future Opportunities

- AM material related challenges in context of present work
 - Multi-material printing combining metals and plastics for 3D circuits
 - Technologies now starting to emerge
 - High thermal conductivity (e.g. copper) and high temperature materials
 - $\circ~$ NASA demonstrated \rightarrow need transition to wider commercial space
 - Fully dense metal deposition (heat transfer) & plastic printing (flow)
- Comprehensive design methods that address AM
 - Re-think traditional design paradigms and re-phrase methods to remove traditional manufacturing limitations
- Democratization of manufacturing \rightarrow logical byproduct of AM
 - But, will low cost, high volume production become a reality?

Conclusions

- AM supports exploration of future 3D power electronics integration and manufacturing
 - New compact, high performance electrical device and circuit concepts realizable
 - Benefits rapid investigation of unique thermal management technologies
- Synergy with advanced structural optimization methods
 - Complex topologies no longer limited by traditional fabrication
- How to realize full potential of AM for power-dense electronics systems?
 - Further research and development for multi-material printing technologies, finished material quality, and new material compositions
- What is applicability for high volume manufacturing?

References

- 1. Zhou, F., Liu Y, Liu, Y., Joshi, S.N., and Dede, E.M., 2015. "Modular design for a single-phase manifold mini/microchannel cold plate." Journal of Thermal Science and Engineering Applications, 8: 021010 (13 pages).
- 2. Dede, E.M., Joshi, S.N., and Zhou F., 2015. "Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink." Journal of Mechanical Design, 137: 111403 (9 pages).
- 3. Joshi, S.N. and Dede, E.M., 2015. "Effect of sub-cooling on performance of a multi-jet two phase cooler with multi-scale porous surfaces." International Journal of Thermal Sciences, 87: 110-120
- 4. Rau, M.J., Dede, E.M., and Garimella, S.V., 2014. "Local single- and two-phase heat transfer from an impinging cross-shaped jet." International Journal of Heat and Mass Transfer, 79: 432-436.
- 5. Dede, E.M., Lee, J., and Nomura, T., 2014. *Multiphysics simulation electromechanical system applications and optimization*. Springer, London.
- 6. Dede, E.M. and Nomura, T., 2014. "Topology optimization of a hybrid vehicle power electronics cold plate application to the design of a fluid distribution structure." EVTeC and APE 2014, Yokohama, Japan.
- 7. Rau, M.J. and Garimella, S.V., 2013. "Local two-phase heat transfer from arrays of confined and submerged impinging jets." International Journal of Heat and Mass Transfer, 67: 487-498.
- 8. Ishigaki, M., et al., 2011. "Proposal of high accurate and tiny rogowski-coil current sensor." IEEJ Annual meeting (Japanese), 4: 265.