Partnership

• 谢谢 CPSS-PSMA Workshop
Power Sources Manufacturers’ Association

- Promotes the interests of the Power Electronics industry
- Sponsors conferences, workshops, research
- On-line industry standards database
- Power Technology Roadmap (PTR)
- PSMA is 35 years old in 2019
- Congratulations to CPSS for 35 years in 2018!
Conferences, Workshops
Power Technology Roadmap (PTR)

• Guidance on
 • Product metrics
 • Technology
 • Applications
 ...for the next 3-5 years

• 17 presentations from industry on trends, new technologies

• Industry commentary on product applications and component technology

• Started 1994, now every 2 years. 2019 = 670 pages

• Based on surveys of PSMA & CPSS members - 謝謝
 • Metrics include cost, efficiency, power conversion density
 • Drivers and barriers to change are identified
Roadmap:
Application Trends

• Automotive / Electric Vehicle
• Battery Charging
• Data Center and Cloud Computing
• Energy Harvesting
• LED Lighting
• Variable Speed Motor Trends in HVAC and Appliance
• Renewable Energy / Grid Storage
• Safety and Compliance
Roadmap: Component Technologies

- Prismatic Aluminum Electrolytic Technology
- The Future of Magnetics
- Low Voltage MOSFETs
- Silicon Super Junction MOSFETs
- Isolated Gate Drivers
- SiC Diodes and MOSFETs Overview
- GaN Devices and Integrated Circuits
- Packaging in High Power
- First-Time-Right Discrete Power Electronic Design
Power Supply & Converter Trends

• AC-DC Front-End Power Supplies
• AC-DC External Power Supplies
• Isolated DC-DC Converters
• Non-Isolated DC-DC Converters
• Power Supply on a Chip (PSiP)
• Power Supply on a Chip (PwrSoC)
• A Subsection of Non-Isolated DC-DC Converters

• Note: % = number of designs (not production quantity)
AC-DC Front-End Power Supplies (200-2,000W)

• Market: “Efficiency!” → “Power Density!”
 • Platinum → Titanium...? Cost?

• HVDC input
 • 2019 = 9% → 2021 = 16%

• Bridgeless Topologies (AC/PFC)
 • 2019 = 11% → 2021 = 24%

• Wide Band Gap
 • Big Increase in SiC, GaN
 • Reduction in Si FETs, IGBTs

• Digital, digital, digital control
AC-DC External Power Supplies

• Market:
 • USB-A and custom connector \rightarrow USB-C, USB-PD/PPS
 • Bigger phone batteries (and 5G) \rightarrow higher power chargers
 • “One-for-all” & more 2-/3-output chargers

• Efficiency up, Power Density up
 • 2x smaller, 2x lighter

• Topology, Frequency
 • CrCM PFC (BLB?), QRF, ACF, LLC, buck...
 • 65 kHz – 600 kHz
 • Bobbin \rightarrow planar transformer

• Wide Band Gap
 • Si \rightarrow GaN
 • Aftermarket \rightarrow In-box
Isolated DC-DC Converters

- Full brick \rightarrow half \rightarrow quarter \rightarrow custom?
- More ‘narrow’ $48V_{IN}$ (2019 = 12% \rightarrow 2023 = 21%)
- More HVDC (26% \rightarrow 30%)
- 150 kHz \rightarrow 500 kHz \rightarrow 1 MHz
- Wide Band Gap (primary switch)
 - Si 2019 = 70% \rightarrow 2021 = 26%
 - GaN 2019 = 4% \rightarrow 2021 = 54%
Non-Isolated DC-DC Converters

- Load V down ~25 mV / year, but A & W up 10% / year
 - 1.2 V to stay ~25%, also 1.8 V for Intel (FIVR on-board regulators)
 - Others moving from ~1 V to ~0.6 V_{OUT}
- Focus was power density, EMI, noise
 - now power density, transient response & heat (efficiency)
- 12 V_{IN} → 48 V_{IN} (high-end server, automotive)
- Very slow Si → GaN conversion (cost)
- PSiP (Power Supply in Package (<=1 in³, include L, C)
 - Most ~12 V_{IN}, 3-10 A_{OUT} can be 100 A (1.2 V)
 - Focus power density, easy-to-use
- PwrSoC (Power Supply on Chip)
 - Embedded L, C (e.g. FIVR, iVRM)
 - Early research into GaN integration
“The Research Lab Today Holds The Future’s New Products”
International University Research

25 universities invited to participate, 13 responded

Special thanks
Responding University Data

<table>
<thead>
<tr>
<th>University or Institution</th>
<th>Number of Tenured or Tenure Track Faculty</th>
<th>Number of Instructors or Non-Tenure Track Faculty</th>
<th>Number of Master’s Degree Students</th>
<th>Number of Ph.D. Students</th>
<th>Approximate Annual Research Funding (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal University Of Santa Catarina</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>500,000</td>
</tr>
<tr>
<td>Harbin Institute Of Technology</td>
<td>14</td>
<td>10</td>
<td>90</td>
<td>40</td>
<td>25,000,000</td>
</tr>
<tr>
<td>MIT</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>No Response</td>
</tr>
<tr>
<td>NC State/ FREEDM Center</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>7</td>
<td>1</td>
<td>20</td>
<td>38</td>
<td>5,000,000</td>
</tr>
<tr>
<td>Polytechnic University of Madrid</td>
<td>5</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Swiss Federal Institute Of Technology</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
</tr>
<tr>
<td>Tyndall Research Institute</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
<td>No Response</td>
</tr>
<tr>
<td>University of Aalborg</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>75</td>
<td>3,000,000</td>
</tr>
<tr>
<td>University of Arkansas - Fayetteville</td>
<td>14</td>
<td>5</td>
<td>20</td>
<td>60</td>
<td>10,000,000</td>
</tr>
<tr>
<td>University Of Colorado - Boulder</td>
<td>3</td>
<td>4</td>
<td>50</td>
<td>20</td>
<td>1,500,000</td>
</tr>
<tr>
<td>University of Illinois, Urbana-Champaign</td>
<td>3</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>700,000</td>
</tr>
<tr>
<td>University of Texas at Austin</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Xi’an Jiaotong University</td>
<td>16</td>
<td>2</td>
<td>110</td>
<td>40</td>
<td>1,500,000</td>
</tr>
</tbody>
</table>
Most Common Research Areas

• Renewable energy related power electronics
 • Converters for solar, wind and energy storage
 • AC and DC microgrids: systems, converters, controls

• Electrification of transportation
 • Converters for electric vehicle drive systems
 • Battery chargers and battery management systems
 • Power electronics for aerospace & marine applications

• Application of wide bandgap devices (SiC, GaN)
 • Medium voltage converters incl. motor drives and solid-state transformers

• Advanced packaging and integration
 • High power modules
 • Power Supply on Chip (PwrSoC)
 • Power Supply in Package (PSiP)
 • Integration of power devices with drivers and control

• Drivers: “Follow the money”
• Most government-funded, focus:
 • Climate change
 • Economic, industrial competitiveness
 • Emphasis on electric transportation and renewable energy
Least Common

• Wide band gap devices
• MHz+ converters
• Switched capacitor converters
• Robotics
• Server/data center power
• Digital power (0)

Unique Topics

• Ohio State
 • Converters, motor drives operating at the high end of medium voltage (69 kV)
• ETH Zurich
 • Automating the design process (optimize vs. efficiency, power conversion density, initial cost, and life cycle cost)
• University of Texas – Austin
 • Gallium oxide (GaO) power semis for very HV switching devices
Industrial Sponsorship Of Research is Small

- Power supply companies are ahead of academia
- Difference in research goals
 - Academia: publications
 - Industry: ready-to-manufacture product / revenue
- Conflict over IP (including patents)
 - Universities: “we thought it up, we own it”
 - Industry: “we paid for it, we own it”

The differences can be resolved but each side has to give something
Thank you,