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Two types of inductors

Pot-core Toroidal

= Core wraps winding = Winding wraps core

= Many intermediate geometries are also possible
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Inductors on Si

Pot-core . Toroidal
(MCM) | (CMC) =~

= Two magnetic depositions = One magnetic deposition.
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Magnetic anisotropy. common In
thin-film magnetic materials 1/

= Hard axis loop provides:

= Low permeability :
needed to avoid Easy AXIS
saturation in inductors. u r B R I

= Low hysteresis loss.

Hard AXxis:
lossless loop
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Microfabricated inductors

Pot-core . Toroidal
(MCM)

= Two magnetic depositions

| | Does not work with
= Uses magnetic material uniaxial anisotropy

only in hard axis

THAYER SCHOOL OF

@ ENGINEERING
AT DARTMOUTH 5

power.thayer.dartmouth.edu



Racetrack inductors fabricated at Dartmouth
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Flux crossing magnetic laminations

= Problem in corners
where top and bottom
magnetic core halves
join.

= EXxcess eddy currents
limit efficiency and Q.

= Power loss, due to

out-of-plane flux
(OOPF): Pgope-
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Variations on the theme: Other
designs with the same problem. §

= V-groove 1-turn inductor
for high current (up to 12 A)

= Polyimide substrate with sputtered
material on both sides

= Microfabricated coupled inductors
(2004, with Tyndall)
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Nano-composite magnetic materials  “j

Magnetic Metal

(3~5nm Co
Particles)

Ceramic (Al,O,, ZrO,, etc.)
= Ferromagnetic (coupled particles)

= Some have strong anisotropy for low permeability
and low hysteresis loss.

= High resistivity (300 ~ 600 uQ-cm) reduces eddy-
current loss for any flux direction.

= Eddy currents due to out-of-plane flux still
dominate loss. Pggpe IS still a problem.



Toroidal Inductors:
No out-of-plane flux! No Pygp¢! |/

= Advantage:

= Flux stays in plane, minimizing eddy-current losses.
= Challenge:

= Flux direction varies; sometimes oriented incorrectly for the
magnetic material anisotropy.

= Solution:

= Induced radial anisotropy, such that flux travel is always in the

low-loss hard-axis direction. : :
Radial anisotropy
Qiu and Sullivan. APEC, 2012
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Fixture to deposit toroidal cores with
radial anisotropy

Co-Zr-O radial-anisotropy cores

Outer diameters: 5.5 mm
Inner diameters: 1.7 mm, 2.3 mm, 3.4 mm
Thickness: 6 ym, 40 pm

Qiu and Sullivan , CIPS, 2012
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Permeability of radial-anisotropy cores
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Permeability of radial-anisotropy cores
with different thicknesses 1/,

Outer —|Inner | thickness Measured by Agilent test fixture
diameter | diameter
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CoZrO core integrated inductor:
Dartmouth cores integrated by Georgia Tech
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CoZrO core integrated inductor: Dartmouth

cores integrated by Georgia Tech
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Batch fabrication

= Cores were deposited on individual
substrates, and manually dropped in windings
at process mid-point.

= OK for a demonstration project, but can we
do true batch fabrication?
= Many on one substrate.
= All processes on one substrate.
= Avoid the need for a tiny magnet for each.
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Shared-magnet radial-field fixture
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= Can make any number of radial-field
regions with only two magnets.

= Can photo etch new top plate for a new design.



Process flow

Cu or Ti-Cu-Ti seed layer sputtered

Cu electroplated in photoresist mold

Seed layer etched and SU-8 insulator formed

Nanogranular magnetic core deposited and oriented

Additional SU-8 insulator layer

Top conductor and electrical vias fabricated together

. Si Substrate

M sio,
M cu Seed Layer

L] Copper

SU-8

. CoZrO Core
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Samples with dummy core

——

All four-turn inductors—Ilower winding design minimizes capacitance.

See Jizheng Qiu, A.J. Hanson, C.R. Sullivan, "Design of toroidal inductors with multiple
parallel foil windings® Control and Modeling for Power Electronics COMPEL 2013.



Summary

= Effective utilization of laminated anisotropic materials:

= Toroidal designs keep the flux in the plane so
laminations effectively squelch eddy currents.

= Radial anisotropy keeps hysteresis losses low.

= Radial anisotropy can be induced by applying a field
during deposition.

= Fixtures for discrete cores.

= Shared-magnet fixture: any number feasible on a
single substrate. (1007?)
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Thank you
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hin-film inductor geometries |/

Via loss in racetrack

Racetrack Toroid Solenoid

Core deposition steps 1
Magnetic vias No
Compatible with Yes
uniaxial anisotropy

Pictures from “Integrating Magnetics for on-Chip Power: A Perspective”, C. R. Sullivan et al., IEEE trans on power electronics, 2013. 22



