Batch Fabrication of Radial Anisotropy Toroidal Inductors

Charles R. Sullivan, Jizheng Qiu, Daniel V. Harburg, and Christopher G. Levey

Dartmouth Magnetics and Power Electronics Research Group

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

Two types of inductors

Pot-core

Core wraps winding

Toroidal

Winding wraps core

Many intermediate geometries are also possible

power.thayer.dartmouth.edu

Inductors on Si

Two magnetic depositions
One magnetic deposition.

power.thayer.dartmouth.edu

Magnetic anisotropy: common in thin-film magnetic materials

Hard axis loop provides:

power.thayer.dartmouth.e

Microfabricated inductors

- Two magnetic depositions
- Uses magnetic material only in hard axis
 - power.thayer.dartmouth.edu

 Does not work with uniaxial anisotropy

Racetrack inductors fabricated at Dartmouth

20

15

Quality factor

5

Flux crossing magnetic laminations

- Problem in corners where top and bottom magnetic core halves join.
- Excess eddy currents limit efficiency and Q.
- Power loss, due to out-of-plane flux (OOPF): P_{OOPF}.

Variations on the theme: Other designs with the same problem.

- V-groove 1-turn inductor for high current (up to 12 A)
- Polyimide substrate with sputtered material on both sides
- Microfabricated coupled inductors (2004, with Tyndall)

power.thayer.dartmouth.edu

Nano-composite magnetic materials

Ceramic (Al₂O₃, ZrO₂, etc.)

Ferromagnetic (coupled particles)

Magnetic Metal

Particles)

(3~5 nm Co

- Some have strong anisotropy for low permeability and low hysteresis loss.
- High resistivity (300 ~ 600 µΩ·cm) reduces eddycurrent loss for any flux direction.
- Eddy currents due to out-of-plane flux still dominate loss. P_{OOPF} is still a problem.

Toroidal Inductors: No out-of-plane flux! No P_{OOPF}!

- Advantage:
 - Flux stays in plane, minimizing eddy-current losses.
- Challenge:
 - Flux direction varies; sometimes oriented incorrectly for the magnetic material anisotropy.
- Solution:
 - Induced radial anisotropy, such that flux travel is always in the low-loss hard-axis direction.

Fixture to deposit toroidal cores with radial anisotropy

Qiu and Sullivan, CIPS, 2012

Fabricated array of fixtures

Co-Zr-O radial-anisotropy cores

Outer diameters: 5.5 mm Inner diameters: 1.7 mm, 2.3 mm, 3.4 mm Thickness: 6 µm, 40 µm

Permeability of radial-anisotropy cores

Outer diameter		thickness	1
5.5 mm	3.4 mm	40 µm	

- High Q: ~ 100 at about 60 MHz.
- Resonance at about 800 MHz.
- Two test fixtures agree.

Measured by both fixtures

Permeability of radial-anisotropy cores with different thicknesses

Outer diameter		thickness
5.5 mm	3.4 mm	40 µm
5.5 mm	3.4 mm	6 µm

- Both cores show Q~100 at f < 100 MHz.
- Characteristics differ at f > 500 MHz:
 - The thicker core has a lower resonant frequency, presumably a selfresonance of the multi-layer structure.

Measured by Agilent test fixture

CoZrO core integrated inductor: Dartmouth cores integrated by Georgia Tech

Batch fabrication

- Cores were deposited on individual substrates, and manually dropped in windings at process mid-point.
- OK for a demonstration project, but can we do true batch fabrication?
 - Many on one substrate.
 - All processes on one substrate.
 - Avoid the need for a tiny magnet for each.

- Can make any number of radial-field regions with only two magnets.
- Can photo etch new top plate for a new design.

Process flow

Samples with dummy core

All four-turn inductors—lower winding design minimizes capacitance. See Jizheng Qiu, A.J. Hanson, C.R. Sullivan, "Design of toroidal inductors with multiple parallel foil windings" Control and Modeling for Power Electronics COMPEL 2013.

Summary

- Effective utilization of laminated anisotropic materials:
 - Toroidal designs keep the flux in the plane so laminations effectively squelch eddy currents.
 - Radial anisotropy keeps hysteresis losses low.
- Radial anisotropy can be induced by applying a field during deposition.
 - Fixtures for discrete cores.
 - Shared-magnet fixture: any number feasible on a single substrate. (100?)

Thank you

Thin-film inductor geometries

Closed core	Yes	Yes	No
Core deposition steps	2	1	1
Magnetic vias	Yes	No	No
Compatible with uniaxial anisotropy	Yes	No	Yes