

AUTOMATIC THERMAL CALIBRATION OF DETAILED IC PACKAGE MODELS

John Wilson

Electronics Product Specialist

Mechanical Analysis Division

June 2016

Topics

- Motivation
- Calibration Process Comparison
- Automated Calibration Example

Model Calibration - Motivation

- Calibrating thermal models to match <u>transient</u> measurements is critically important for modern electronics thermal design.
- Maximize Model Accuracy
 - Calibrating <u>all</u> model aspects for <u>all</u> package time constants ensures the package will respond accurately for any steady state or transient application. Relying on single metric type data is not enough.
 - Vital to demonstrate this accuracy to ensure informed design decisions are made
- Certified Supply Chain Models
 - Provide simulation models that will respond correctly to any driving power profile.
 - Provide empirical evidence that this is the case.

Model Calibration Process Comparison

FloTHERM and T3Ster Automated Process

Initial model with range of somewhat known values

T3Ster: Experimental Measurement

T3Ster Measurement Output

T3Ster Structure Function

■ T3Ster Master software converts the measured thermal response into a Structure Function. One way to interpret this is the RC path that the heat takes from the junction, through the device, and to the ambient.

Calibration Example

■ A detailed FloTHERM model of the package was simulated in a virtual test environment with best known input values

Quantifying Uncertainties

Design Parameter	Minimum	Maximum
Die Solder : Conductivity [W/mK]	20	45
Source : X Size [mm]	4	7
Source : Z Size [mm]	8	11.5

...And the range of somewhat known values

Calibration Interface

Important factors

- Import measurement data, define temperature to calibrate
- Specify/adjust design limits
- Verify measurement and analysis consistency
- Design Experiments
- Calibration extent

Design Of Experiments

Design Parameter	Minimum	Maximum
Die Solder : Conductivity [W/mK]	20	45
Source : X Size [mm]	4	7
Source : Z Size [mm]	8	11.5

Calibration Results

Response Surface Optimization Output

Result Comparison: Peak Temperature

Result Comparison: Temperature Distribution

80ms Pulse, t: 20ms

Uncalibrated

Calibrated

Summary

- Correlating a model against transient measurements provides the most accuracy
- Structure functions help identify areas of inconsistency between the assigned model values and measurement results
- Automating calibration provides for a repeatable and scalable process
- Thanks!

Graphics®

www.mentor.com