

Advanced Power Module Packaging for WBG Devices

Advanced SiC Power Module Packaging :

Layout, Material System and Integration

Fang Luo, Cai Chen, Amol Deshpande

University of Arkansas

fangluo@uark.edu

April 25th , 2019

ARKANSAS UA Packaging Program

High Density Electronics Center (HiDEC)

Advanced Power Module Packaging for WBG Devices

TO247 Custom High-Temperature Standard 62-mm Module Power Module

Power Module Packaging

Flexible Substrate Solutions

Fang Luo, University of Arkansas, fangluo@uark.edu

MV Testing facility:

National Center for Reliable Electric Power Transmission (NCREPT)

Three R&D 100 Awards: 2009, 2014 and 2016

Outline

ARKANSAS **State-of-the-Art and Limitations**

Advanced Power Module Packaging for WBG Devices

ARKANSAS.

Advanced Power Module Packaging for WBG Devices

	Stray Inductance	Current Capacity	Power Cycling	Double side cooling	EM Loop
Wire-bond	High	Low	Low	Ν	High
Ribbon Bond	Medium	High	Medium	Ν	Medium
Wireless bonding	Low	High	Case-by-Case	Y	Low

Ribbon Bonding

Heraeus Die Top System

Substrates

Advanced Power Module Packaging for WBG Devices

	Si ₃ N ₄	AIN	Al ₂ O ₃	BeO
Dielectric constant	8~9	8~9	9~10	6-8
Loss factor	2×10-4	3×10-4	3×10 ⁻⁴ -1×10 ⁻ 3	3×10-4
Resistivity (Ω·m)	> 10 ¹²	> 10 ¹²	> 10 ¹²	> 10 ¹²
Dielectric breakdown strength (kV/mm)	10 - 25	14 - 35	10 - 35	27-31
Thermal conductivity (W/m⋅K)	40-90	120-180	20-30	209-330
Bending strength (MPa)	600-900	250-350	300-380	≥250
Young Module (GPa)	200-300	300-320	300-370	330-400
Fracture toughness (MPa·m ^{1/2})	4-7	2-3	3-5	1-2.5
CTE (mm/m·K)	2.7-4.5	4.2-7	7-9	7-8.5
Available substrate technologies for thick film metallization	AMB	DBC/DBA AMB	DBC/DBA	DBC

(a) TPC substrate: (a) 300µm thick printed copper substrate, (b) reliability comparison results.

DBC

TPC (b)

TPC

Die Attachment

Advanced Power Module Packaging for WBG Devices

Fang Luo, University of Arkansas, tangluo@uark.edu

Encapsulation Material

Advanced Power Module Packaging for WBG Devices

	Material	Part Number	Manufacturer	Dielectric Constant	Breakdown strength	Temperature Range (°C)
	Dielectric Fluid	Novec® 7500	3M	5.8	35 kV, 0.1" gap	128 max.
	Polyamide Imide (PAI)	Torlon® 4203	Boedeker Plastics	4.2 (@ 1 MHz)	100 – 280 kV/mm	260 max.
	Ероху	Hysol® -60NC	Henkel	21.7	20 kV/mm	-
	Silicone	3-6635	Dow Corning	20.5	20 kV/mm	-80 to 200
	Silicone	Sylgard® 567	Dow Corning	2.79 (@ 100 kHz)	16 kV/mm	-45 to 200
	Silicone	TSE3051	Momentive	2.8	18 kV/mm	-
	Silicone	CF2186	Nusil	35.4	19.5 kV/ mm	-140 to 315
	Silicone	R-2188	Nusil	2.6 (@ 100 kHz)	19.5 kV/mm	-
	Benzocyclobutene (BCB)		Dow Chemicals	2.65	530 kV/mm	
	Poly (dimethyl diphenyl) siloxane Gel	RTX-5	Restek	2.8 (@ 1 kHz)	200 kV/cm	265 max.

Nano-Ceramic Enhanced Encapsulation, S. Ang, UArk

ARKANISASITY OF **Improved Wire-bonded Structure**

Advanced Power Module Packaging for WBG Devices

HT SiC Module, Z. Chen, CPES 2012

Double Ended Sourced SiC Module, M. Wang/F. Luo, OSU/Uark 2017

Highlights:

Relatively mature 1.

> processes and material systems

- 2. **Reduced Bond-wires**
- З. Improved dynamic current sharing in device paralleling

Hybrid Packaged SiC Module, Z. Chen, CPES 2012

Hybrid Packaged SiC Module, C. Chen / F. Luo, HUST/Uark, 2017

A R K A NISAS EMI-less Power Module

Radiated EMI measurement block

- **High repeatability** High Precision (0.2 mm step size) Automatic data acquisition
 - Post processing capability

Long Distance → Large Inductance

Advanced Power Module Packaging for WBG Devices

EMI-Less Power Module Design

DES -89.22 dBm

Features

Advanced Power Module Packaging for WBG Devices

COPYRIGHT : MORTEN INGEMANN

ARKANSAS Wire-less Structure (1)

SKiN technology used in SiC power module: (a) Modified SKiN structure, (b) 1200V/400A power module (1 nH loop inductance)- Semikron

Direct-Lead-Bonding (DLB)

Full SiC DLB module by Silicon Power Corporation

STMicroelectronics SiC module for Tesla Model 3

(a) (b) SiPLIT technology: (a) cross-section of power module, (b) SiPLIT module.

- Significantly reduction of power loop inductance
- Potential for double-side cooling

PWB like planar inter-connection GE Power Overlay (POL)

ARKANSAS Wire-less Structure (2)

Chip in Polymer (CIP) Embedded Power Package (GaNPX® Package)

Ampere Lab, Chip-on-Chip (CoC) SiC Module

(b)

ORNL Shim-connected Planar SiC Module

Fraunhofer IZM 90A embedded power module

H.Mantooth, UArk PressPak

H.Mantooth, UArk BGA FlipChip SiC Package

Integrated Modules

Advanced Power Module Packaging for WBG Devices

D.C.Hopkins, NCSU, Power Chip on Bus (PCoB) module

H.Mantooth, UArk BGA FlipChip Integrated SiC Package

✤ Wafer-level integration is not included here

ORNL, Planar SiC module with Pin-fin heatsink

ARKANSAS High Voltage Packaging Structure

ARL Stacked SiC diode package with integrated thermal management

Advanced Power Module Packaging for WBG Devices

UARK 6.5kV Wire-bondless, Double-sided Cooling Power Electronic Module

UARK 10 kV SGTO and Diode

UARK Stack DBC Design

CPES, VT, 10 kV/ 54 A wire-bond-less module

ARL Substrate-less design

4H PEBBs for Aircraft Propulsion

Advanced Power Module Packaging for WBG Devices

Gen 1: Si IGBT- SiC MOSFET Hybrid 100 kW PEBB (L_{bus} = 15 ~18nH)

"Sandwich" does not always help in WBG converters

ARKANSAS

Advanced Power Module Packaging for WBG Devices

P/O/E/T/S

ARL ParaPower

L. Boteler, DevComm, S. Miner, USNA

- Fast thermal estimation
- Thermal impedance based
- No FEA simulation
- Both thermal steady state and dynamic analyses

- > Advanced packaging is the key in WBG power conversion
- New packaging architectures/material system are in high demand
- Converter (PEBB) level packaging is as important as module packaging, which reflects WBG impacts at system level
- Multi-disciplinary co-design gives possibility for global optimization

Advanced Power Module Packaging for WBG Devices

Back Up