

2019-04-24

ABB LinPak: smart design for efficient converters

IWIPP 2019

Fabian Fischer, Head of R+D BiMOS Modules, ABB Semiconductors

ABB LinPak: smart design for efficient converters

Module concept and EM Design

Design and Manufacturing

Applications

Outlook

LinPak IGBT modules

Setting the standard for the next generation power module

Low inductive

module inductance 10 nH, ready for fast chip-sets and future SiC solutions

- Flexible

one module for different current ratings, easy paralleling with one driver

- Highest current density compact inverter design
- Integrated thermistor
 keep the temperature under control
- Multiple source
 Open standard no license fee for the outline
- 150°C (3.3kV) and 175°C (1.7kV) operation

How an idea evolves into a standard

LinPak has a history and drives the future

First advanced thoughts and discussions on a phase-leg IGBT module with traction proof high reliability, low inductance and appropriate power connections.

October 2014: ABB and Hitachi present for the first time a productconcept based on 90 x 140mm²

PCIM'15: ABB presents a prototype stack with 4 LinPak modules in parallel. Outline changed to 100x140mm² as a result of customer feedbacks.

Autumn 2015: Final outline and pin-out of the LinPak is frozen.

Spring 2017: LinPak is fully qualified. First bulk order received for traction converters and deliveries of modules has started.

Comparison in the inverter

HiPak versus LinPak

HiPak LinPak		DC+
	2 HiPak (1.7 kV / 3600A)	4 LinPak (1.7 kV / 4000A)
Module inductance	16nH (2 x 8nH)	2.5nH (10nH for a single module)
Bus-bar inductance	10nH	1.5nH
Capacitor inductance	1.5nH	1.5nH
Total (module including DC-link)	27.5nH	5.5nH (22nH for a single module)
L _σ · I _C (3600A)	99 μVs	19.8µVs
Overvoltage @ t _f = 0.12µs (1700V SPT++)	825V <i>100%</i>	165V 20%

LinPak: Electromagnetic Layout

Coupling Inductance

LinPak internal layout

Slide 6

Gate Emitter Coupling 0.2 0.0 $V_{GE,x} = V_{GE} + \mathbb{L}_{x}$ Coupling Ind. [nH] -0.2 dt -0.4 -0.6 VGE,x: Effective gate-emitter-voltage -0.8 at IGBT x -1.0 **VGE:** Externally applied gate-emitter -1.2 voltage -1.4 Lx: coupling inductance -1.6 di/dt: current transition

EM improvement in the development

For fast Si chip-sets and SiC devices a balanced gate emitter coupling is crucial

LinPak EM layout

Impact on IGBT turn on behavior

Similar switching speed of bottom and top switch

Balanced GE-coupling

- Homogenous current sharing during switching

Counter coupling trade-off

- Limit short-circuit oscillations, but still allow fast switching

LinPak Assembly

Design for Automation and Manufacturing

Housing assembly with integrated terminals, nuts, sealings and gateprint (PCB)

- Reduced number of components for assembly
- Fewer process steps
- Faster production
- Easy for automated manufacturing

LinPak Assembly

Particle free ultra sonic welding

Link to video: https://search-ext.abb.com/library/Do

wnload.aspx?DocumentID=9AKK107046A4692&LanguageCode=en&DocumentPartId=&Action=Launch

LinPak IGBT modules

Easy paralleling (e.g. 1700V)

LinPak IGBT modules

Easy paralleling (e.g. 1700V)

IGBT turn off

Diode turn off

Short circuit 1

Homogenious switching behavior in paralell operation

Traction package for regional trains

Next generation traction converter platform

Country: CH, DE

Operator: SOB, SBB, BLS, GoAhead, Abellio

Category: EMU FLIRT

Scope of supply: Transformer Traction converter

Key data: 3000 – 3700 kW per train

Deliveries: Since 2018

Customer need

- Highest efficiency

- 100 % roof-mounted traction package
- Higher traction and auxiliary power

ABB solution

- High efficient converter with innovative topology
- Next generation power semiconductors
- Most efficient traction transformer
- New high-performance control system with TRDP (train real time data protocol)
- High power density

Customer benefits

- Up to 25 % improvement of overall traction chain efficiency
- Increase of passenger capacity

500A

sample

Gate connection Top electrode Full-SiC technology connection drivers built and tested Substrate 3 Substrate 2 with special substrate Semiconductor for homogenous Substrate 1 - main substrate switching: 1200V, 2 x Top metallization (electric circuit) Bottom metallization (radiation) Lowest switching losses Rg_internal = 10 Ω Rg_internal = 10 Ω and low over-voltage 1000 600 600 Turn On Turn Off 1700V, 2* 1100A 800 available as engineering 400 400 $\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda$ 600 400 ∑ > 200 V_{Ds} [V] [| 200 −^Ω 200 4 400 dI/dt = 5.6 A/nsdI/dt = 9.1 A/ns3300V technology E_{off} = 19 mJ E__ = 4.6 mJ 200 drivers in evaluation MMMMM 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 c) d) Time [µs] Time [µs]

SiC - LinPak **Technology drivers**

CONFIDENTIAL

АК

LinPak

Comparison LV to HV package

LV LinPak

HV LinPak

