

3D SiP with Embedded Chip Providing Integration Solutions for Power Applications

Lee Smith 3D-PEIM June 14, 2016

Outline

- Introduction of UTAC and System in a Package (SiP) Sites
- Multi-chip Package (MCP) / SiP Forecast & Attributes
- Trends & Applications, Trade offs for 3D SiP w/ Embedded Chip
- Adoptions of Embedded Chip Packaging in Power and High Density Applications
- 3D SiP with Embedded Chip UTAC / AT&S Collaboration
- Summary

UTAC at a Glance

- Outsourced Semiconductor Assembly and Test services ("OSAT") provider in support of Analog, Mixed-Signal, Logic, Power and Memory products.
- UTAC 2015 Revenue \$878M; Ranked 6th in the Top Ten OSAT
- Focus Assy, Test and Turnkey; Test comprises 35% in 2015.
- 1997 Established in Singapore
- HQ in Singapore; Mfg Singapore, Taiwan, Malaysia, Indonesia, Thailand, China.
- >260K M² Manufacturing Space and about 12K Employees Globally.
- Sales offices located worldwide.
- Markets: Mobile Phone, Automotive, Security, Wearable's, Industrial & Medical.

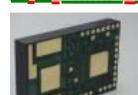
UTAC SiP Sites Summary

UTAC Dongguan, China (UDG)

[Since 1988, >500k sq ft, China Logistics, WW distribution] BGA, LGA, QFN, Memory Cards, USB, SiP, 3D SiP w/ Embedded chip

UTAC Thailand (UTL)

[Since 1973, 640k sq ft, Auto & Security certs.] QFN, GQFN, LGA, MIS MEMS, Cu Clip



UTAC Shanghai, China (USC)

[90k sq ft, WGQ Free trade zone] QFN, FBGA, LGA, MIS

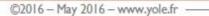
SIP/MCP FORECAST

Product/Package Type Volume (Bn Units)	2014	2019F	Leading Suppliers/Players
Stacked Die In Package and Memory Card	8.3	10.5	Samsung, Micron, SKHynix, Toshiba, SanDisk PTI, ASE, SPIL, Amkor, STATS ChipPAC
Stacked Package on Package: Bottom Package Only	0.95	1.2	Samsung, Apple, Qualcomm, Mediatek Amkor, STATS ChipPAC, ASE, SPIL
PA Centric RF Module	4.5	5.9	Qorvo, Skyworks, Anadigics, Avago, Amkor, ASE, Inari, HEG, JCET. Unisem, ShunSin
Connectivity Module (Bluetooth/WLAN)	0.5	0.7	Murata, Taiyo Yuden, Samsung, ACSIP, ALPS, USI
Graphics/CPU or ASIC MCP	0.25	0.20	Intel, AMD, Nvidia, Xilinx, Altera
Leadframe Module (Power/Other)	3.2	4.7	NXP, STMicro, TI, Freescale, Toshiba, Infineon/IR, Renesas, ON Semi
MEMS and Controller	5.4	8.2	ST, Analog, Bosch, Freescale, Knowles, InvenSense, Denso
Total	23.1	31.4	Source: Prismark

SiP Attributes:

- Heterogeneous integration into a standard package format (BGA, LGA, leadless or leaded leadframe)
- Multiple ICs typ. w/ diverse device functions (logic + memory, RF or analog + digital, control + sensors)
- Passive Components (discrete SMT, embedded; IPD stacked, embedded or planar 2D)
- Mixed assembly technologies (SMT, Wirebond, FC, Embedded / RDL wafer / panel level)
 MCP (multi chip package) attributes:
 - Multiple ICs in a standard package but typically few or no passives
 - Typically not diverse device functions (Memory RAM + Non volatile, Logic + Logic)
 - Die stacking is widely used in Memory MCP

SiP Performance (size, electrical & thermal)


Applications for 3D SiP with Embedded chip

(Source: Fan-Out and Embedded Die: Technologies & Market Trends report, Yole Développement, Feb. 2015)

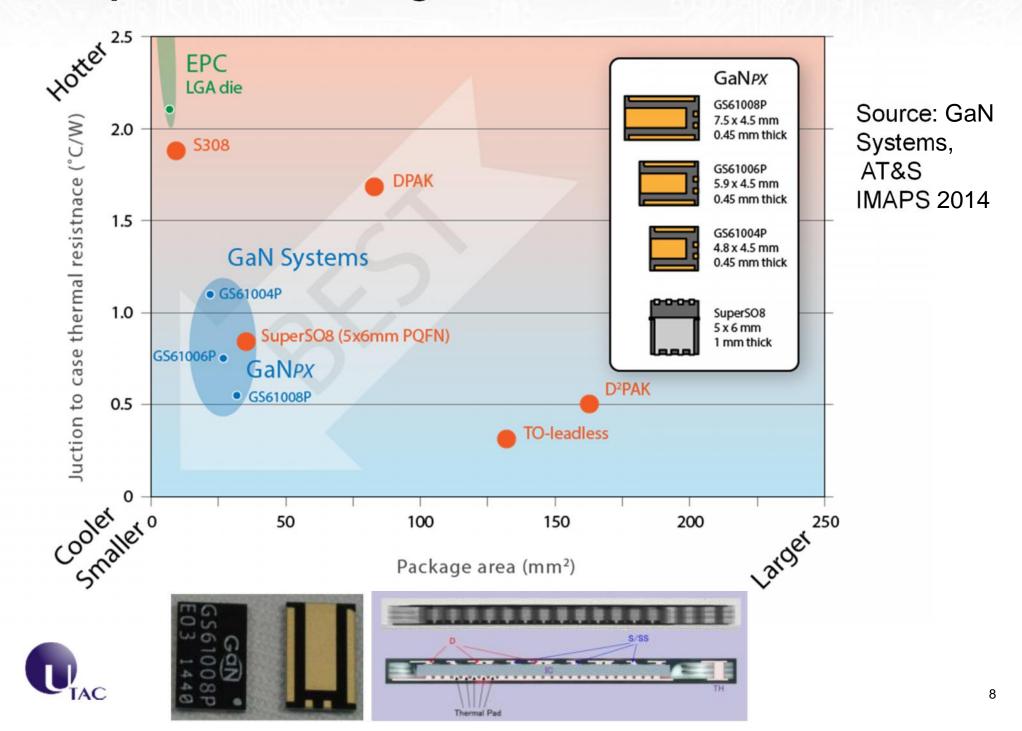
		
	Stand-Alone active die packages	Embedded SiP Modules
Cell phones Portable media players Notebooks Digital cameras	 IPD - ESD protection IPD - RF DC/DC converters IC Drivers: Audio codec, battery charger, display interface, LED driver) Power Management Unit Transceivers Bluetooth/GPS/FM: Processor 	O Cellular Radio: IPD-RF, Transceiver, PA O WLAN Module: IPD-RF, DC/DC converter O Bluetooth/GPS/FM: DC/DC converter, processor O CPU/GPU: Embedding of stacked ICs in PoP O Memories: Embedding of stacked ICs in PoP O Baseband: Embedding of stacked ICs in PoP O Audio Module: IPD-ESD, IPD-Capa, Audio codec/driver O Digital TV Module: IPD-Capa, Video decoder, DC/DC converter O Camera Modules: Sensor, DC/DC ISP, AF driver O MEMS/Sensor Modules: Sensor(s), ASIC ➤ Oscillators, Si-microphones, pressure sensors, inertial sensors, magnetic Hall sensor, RFID
Medical & industrial	 Power Applications: MOSFET, IC drivers, Thin-film batteries 	 Hearing Aids: IPD-ESD, IPD-Digital, processor, memory Pacemakers: IPD-ESD, IPD-RF, IPD-Digital, processor, memory Wireless Sensor Node applications: RFID, thin-film battery, magnetic hall sensor
Automotive	IPM "Intelligent Power Modules" MOSFET, IGBT, IC driver, Sensor	 Engine Control Module: MCU, memory, IPD Telematics/Car information units: GPS, NFC MEMS/Sensor Modules: Sensor(s), ASIC Camera Modules, Hall Sensors, TPMS, IMU modules, RFID

3D SiP w/ Embedded Chip Pros / Cons

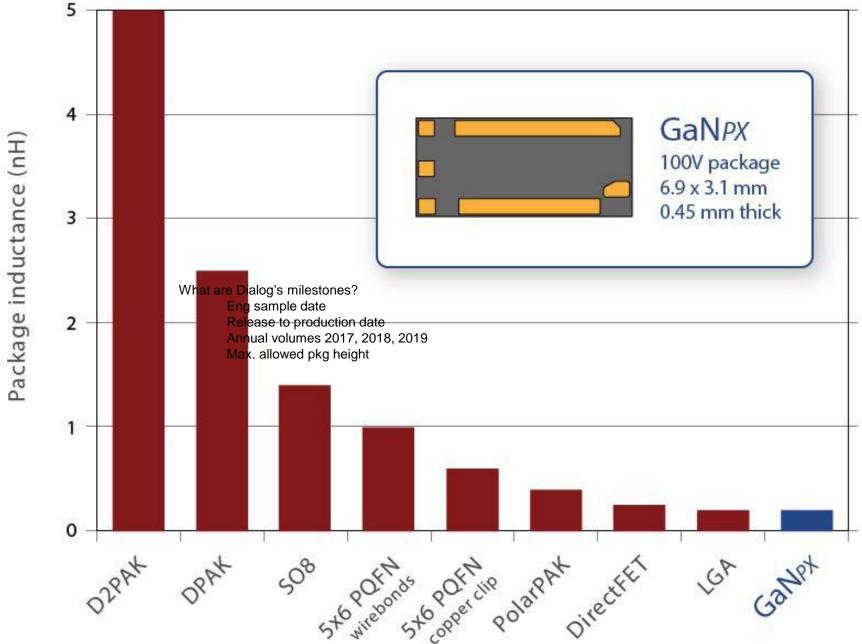
Miniaturization:

- + Reduced SiP component footprint area
- Increased SiP component mounted Z height

Design flexibility:


- + Tailor the interconnect technology (embedded via, wirebond, FC or SMT)
 Allows embedded chip technology to provide higher wiring density solutions.
 (Co-design methodology is required to optimize for system and device cost / performance trade-offs. Chips first assembly techs require co-design for):
- KGD requirements, design for test & yield optimization.

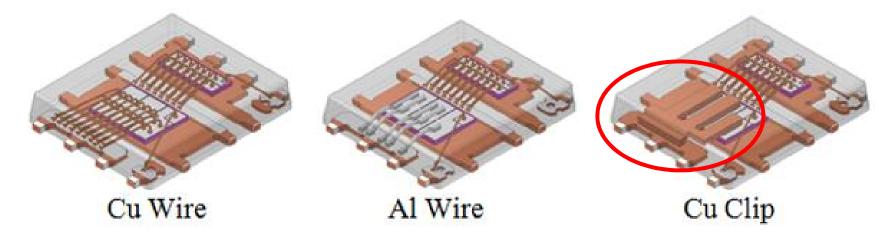
Electrical performance:


- + Improved signal integrity or power efficiency thru shorter vertical (via) interconnects,
- power / ground planes in embedded chip substrates and lower package parasitics.
- + EMI / RFI shielding and isolation of digital and RF devices thru ground planes and plated via ground fences along with ability to shield the top side assembly.
- + 3D SiP architecture enables closer placement of critical passives (inductors, capacitors, filters, etc...) to IC devices.

Comparison of Package Area vs. Thermal Resistance

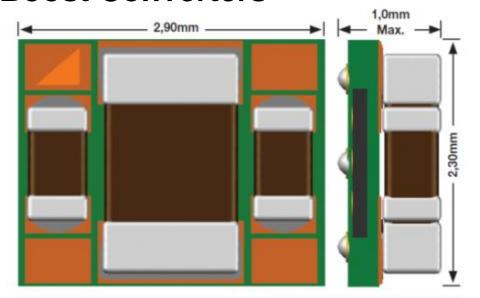
Package Inductance Ranking

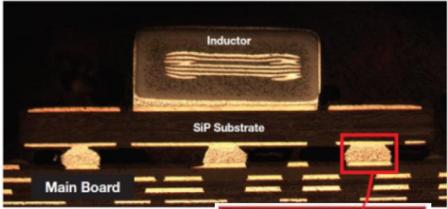
Source: GaN Systems / AT&S IMAPS 2014


Power QFN with Cu Clip

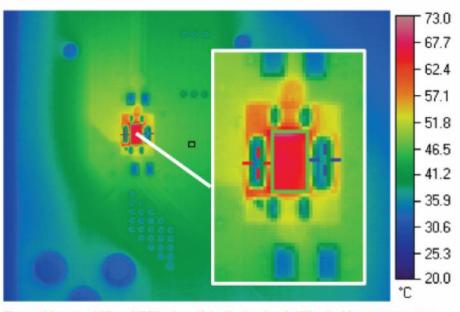
Replaces traditional wire bond interconnection, used for high performance MOSFETs (reference DrMOS)

Cu clip replaces multiple Cu or Al wire bonds


Cu clip provides lower resistance and inductance than multiple wire bonds

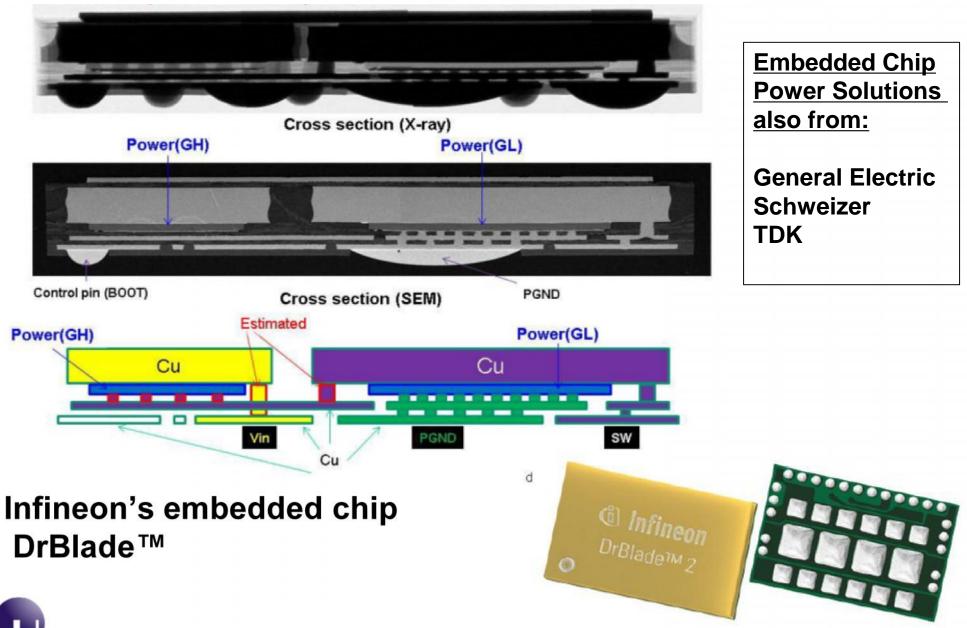

Cu clip improves thermal performance

TI MicroSiP™ (Introduced 2011) > 20 products Step-down & Boost Converters

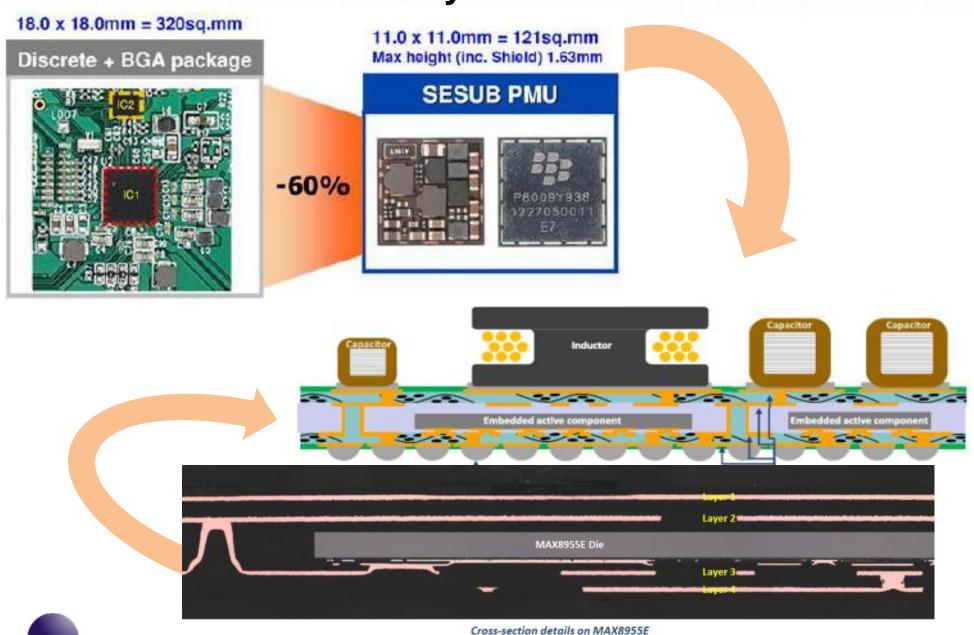


120.2 µm

Thermal Evaluation

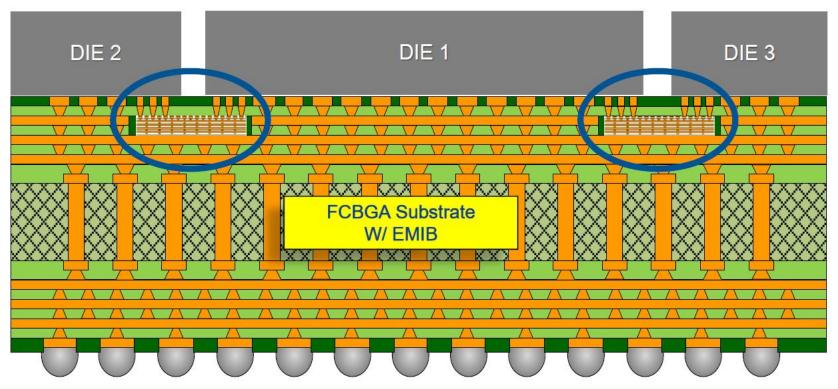


Thermal Image of MicroSiPTM when IC is dissipating 0.45W. Ambient temperature is 22°C, max junction temperature is 72°C. For thermal modeling, a value of Θ_{JA} =125°C/W provides an excellent initial estimate of thermal performance.


Board-Level Reliability Data

8-pin MicroSiP™				
	Test Parameters	Results (t _{first fail})		
Drop	1500G/1.0ms pulse	> 100 drops		
Temp Cycle	-40/125°C, 2 cycles/hr	> 1000 cycles		

Embedded Chip Technology – adoption accelerating in Power Applications



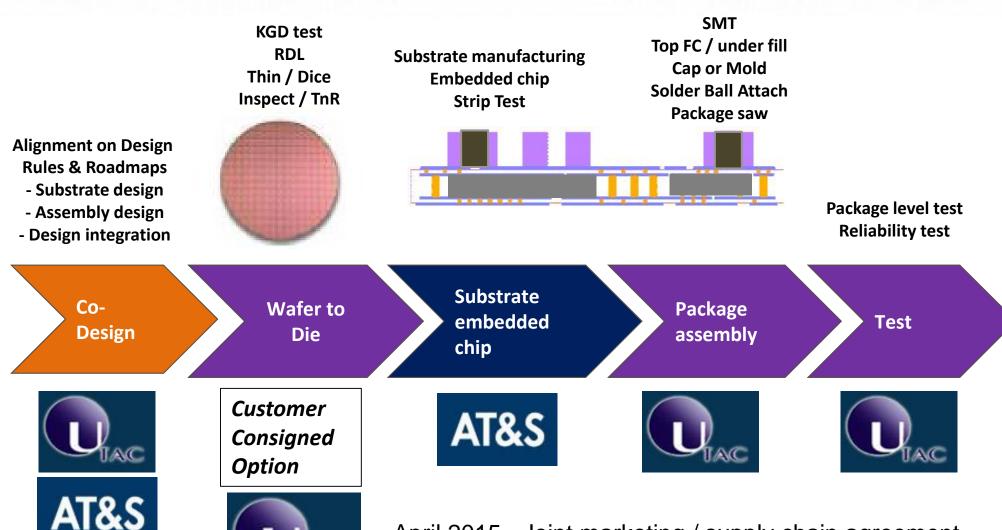
TDK's SESUB Technology shrinks Power Management section 60% in BlackBerry™ Z10 Phone

Embedded Chip Technology – for high density / bandwidth 3D Pkg (2.5D architecture w/out TSVs)

EMIB Construction (Embedded Multi-die Interconnect Bridge)

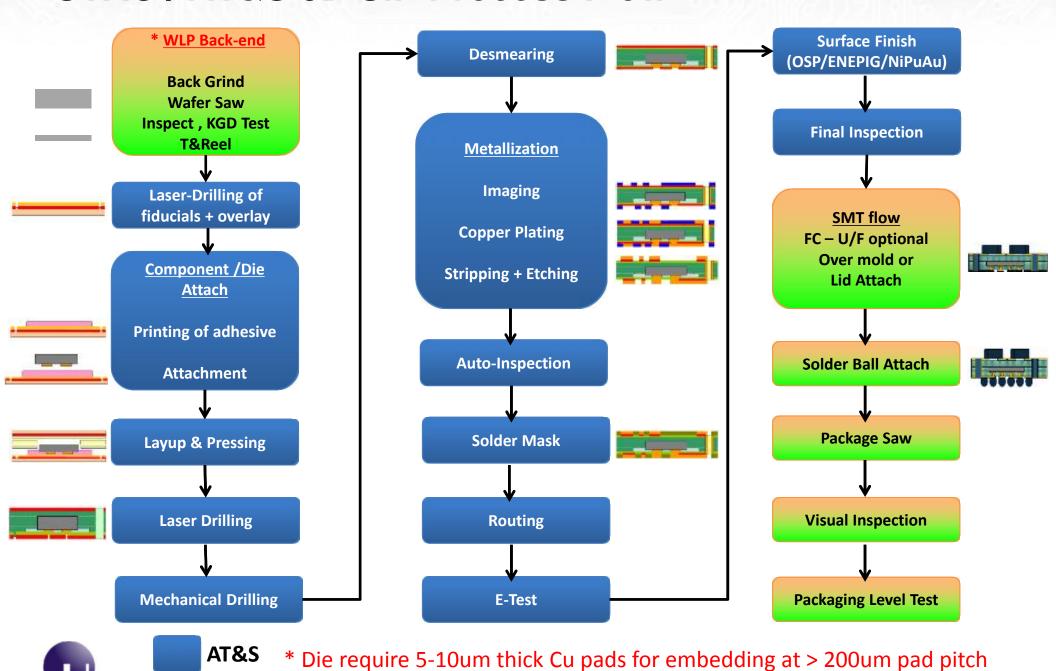
An Alternative Architecture for High Density Multi-Chip Package Connections

Source: Intel Corp. (IMAPS March 2016)


Intel EMIB vs. 2.5D Silicon Interposer: Evaluation Matrix

	Silicon Interposer	EMIB
Wiring Density		
Chip-to-Chip Signal Integrity		
Through Package Signal Integrity		
Through Package Power Delivery		
Silicon Processing		
Substrate Processing		
Assembly Processing		
Total Chip/Si Area on Package		
Overall Cost		
Final Recommendation		☑

Source: Intel Corp. R. Mahajan keynote IMAPS DPC 2016

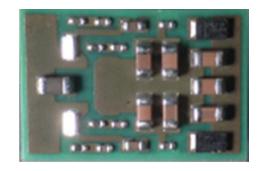

3D SiP Supply Chain UTAC / AT&S Collaboration

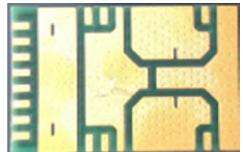
April 2015 - Joint marketing / supply chain agreement
Between AT&S and UTAC for 3D SiP with embedded chip technology. Collaboration press release April 2016.
AT&S over 5 years production embedding experience.

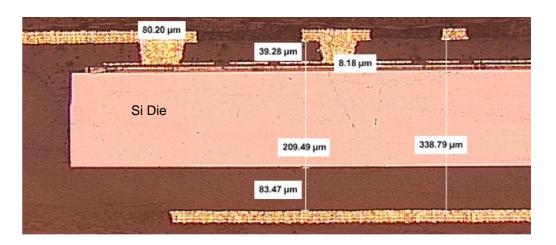
UTAC / AT&S 3D SiP Process Flow

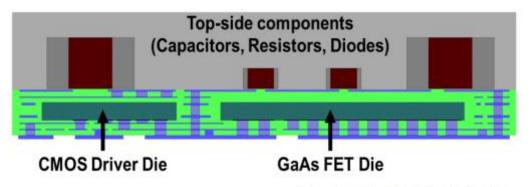
UDG

Sarda Technologies Rev. 1 HIPS


Package Type: 4.5 x 7.2mm LGA-SIP Highlights: 2 embedded die + 24 passive


components on substrate top side


Package size / Type	4.5 x 7.2 mm LGA- SIP
Substrate Thickness	560 um ± 10% 320um core
Die thickness	200 um Max.
Surface finish (Die DAP)	Electrolytic NI/AU
Surface finish (Land Pad)	Electrolytic NI/AU
# of Passive Component (Top of substrate surface)	24ea Passive
Component Sizes	Passive 10ea 01005, 10ea 0402, 4ea 0201.
# of embedded chip	2
Strip Size	188x64mm
Substrate Metal layer	4 Layer



Assy Layout

3D SiP with Embedded Chip Reliability Summary

AT&S Reliability Data and UDG Laminate Reliability Requirements

PCB size: 120mm x 120mm

AT&S			UDG Laminate Requirements
Method	Specification	Result	Specification
Moisture Sensitivity Level	Peak @ 260 C	Minimum MSL3	MSL3
Thermal Cycling	-55 C / +150 C	1000cycles passed (TC Grade 1)	-55 C / +125 C ; 1000 cycles
HAST	110 C @ 85%RH @ 5VDC	264 hours passed	uHAST - 130 C/85%RH; 96 hours
High Temperature Storage	@125 C	1000hours passed (TH Grade 2)	150 C ; 1000 hours
Temperature/ Humidity	85 C / 85%RH	1000hours passed (TH Group A)	Per customer
Board bending	5mm/s	80K bends passed	Per customer
Random vibration	3 g (rms) (5-500) Hz	30 min per axis passed	Per customer
Shock	10kg @ 0.2ms	3 per direction passed	Per customer
Reflow sensitivity	Pb-free profile (255 C)	30 cycles passed	Per customer
Drop Test	1500g @ 0.5ms	10 drops passed (MS Group F)	Per customer
PCB: No of layers: 4 Base material: Panasonic R:	Components: Material: Silicon Component tyr		UDG can perform Reliability Testing as required per Customer Specs.

Component size: 0.9mm x 0.9mm to 5.9mm x 5.9mm

Component type: Daisy Chain

19

Summary

- System in a package (SiP) is a strategic focus area for UTAC
- 3D SiP with Embedded Chip provides integration, size and performance benefits over 2D planar SiP solutions
- 3D Embedded Chip technology adoption is accelerating in Power and High Density Interconnect Applications
- Supply chain collaboration with AT&S for emerging 3D SiP solutions with embedded chip technology will advanced the technology and provide FTK supply solution for customers

