

<u>WIRELESS POWER TRANSFER –</u> <u>USEABLE IN ROBOTS ?</u>

Cem Som

Vice President Midcom Europe

WURTH ELEKTRONIK MORE THAN YOU EXPECT

- World of Robots
- Wireless Power Transfer (WPT) Technology
- WPT in AMR/AGV

MARKET BRANCHES

Trade (Amazon, Alibaba,..)

Industry

Logistics (DHL, UPS,..)

Automotive

Medical

Agriculture

WHAT ARE WE TALKING ABOUT ?

AMR (Autonomous Mobile Robots)

AGV (Automated Guided Vehicles)

Forklift

Global Mobile Robot Manufacturers 2022

Source: AGV network website

Global Mobile Robot Market

Material Transport Mobile Robot Market

Global Automated Guided Vehicle Market

OPPORTUNITIES AND FORECAST, 2020-2027

Global Automated Guided Vehicle Market is expected to reach **\$13.52 Billion** by 2027.

Growing at a CAGR of 16.6% (2020-2027)

Source: https://www.alliedmarketresearch.com/automated-guided-vehicle-market

WHAT IS THE MOTIVATION BEHIND CHANGING TO AMR/AGV?

- Severe lack of availability of skilled personnel
- Start with automation of simple tasks in the work flow (e.g.20% of global pallet movements can be done by AMR)
- Implementation cost will be compensated fast due to possible 24/7 usage and reduced personnel cost
- Reduced vulnerability of operations (e.g. war, pandemic (staff sick or quarantined))

FORKLIFT FATALITIES BY TYPE OF ACCIDENT:

Fatal Accident Type	%
Crushed by vehicle tipping over	42
Crushed between vehicle and a surface	25
Crushed between two vehicles	11
Struck or run over by a forklift	10
Struck by falling material	8

Source Safety in Numbers and OHCSA report, the US industry in 2018

Now, why Wireless Charging?

TREND SURVEY ON LINKEDIN 2021

Next 5 years. What Trends will become standard in the AGV/AMR Industry?

Inductive Wireless Charging	42 %
Cloud robot management system	23 %
Natural Nav replaces Laser Nav	32 %
Other (indicate in comments) 1	4 %

Hochschule für Wirtschaft und Gesellschaft Ludwigshafen

INTRODUCTION TO WIRELESS POWER TRANSFER

Inductively coupled magnetic resonant system

- Frequency: kHz regime
- Distance: short range regime

[1] R. Bosshard, PhD thesis 2015, "Multi-Objective Optimization of Inductive Power Transfer Systems for EV Charging"

FIGURE OF MERIT FOR EFFICIENT POWER TRANSFER

3D FEMM ANALYSIS OF WPT MODEL-ANGULAR MISALIGNMENT

15

The coupling factor drops already below0,4 at a distance of half of the coil radius!

Coupling versus coil displacement

AC Loss Behaviour of Wireless Power Transfer Coils

- AC behavior of each coil is determined by interplay of wire type, winding geometry, number of layers and density of turns
- Litzwire coils outperform their solid wire counterparts
- Solid wire coils with high density of turns show strongest derating

Improvement using ferromagnetic shielding

With shielding

<u>Magnetic field simulation full ferrite</u>

Magnetic field simulation with center hole

 $r_{\rm in} = 5 \text{ cm}$ $r_{
m out} = 10 \text{ cm}$ $n_{
m turns} = 10$

 $L = 32.3 \,\mu\text{H}$ $I_{\text{peak}} = 10 \,\text{A}$

Magnetic field simulation with 6 stripe ferrite shielding

 $r_{\rm in} = 5 \text{ cm}$ $r_{
m out} = 10 \text{ cm}$ $n_{
m turns} = 10$

$$L = 25.6 \,\mu\text{H}$$

 $I_{\text{peak}} = 10 \,\text{A}$

TECHNICAL PARAMETERS (COIL RELATED)

All parameters can be tailored e.g. to the application or regional approval

 Power
 100 W to 16 kW
 typical 3 kW

 Efficiency
 >90%

 Voltage
 15 – 60 V

 Current
 40 – 70 A

 Frequency
 80 – 150 kHz

 z – Distance
 5 – 250 mm
 typical 40 mm

WIRELESS POWER CHARGING OPTIMIZATION

Source: Varta Website

Coils – Electronics – Battery have to match to reach the best result for the application

Wireless energy systems

5) Stationary Stationary charging 1 Wallbox pad Mobile Unit and 3 Battery system mobile charging pad Energy management 5 etaHUB 3 2 Wiferion

WIRELESS CHARGING CONCEPTS

Charging & Service Area

Source: emeia.sumitomodrive.com

Charging strip during work

Source: Magment website

Process Integrated Charging Spots

Source: Wiferion

LACK OF STANDARDS

Currently no standard

Activities ongoing/starting in the Wireless Power Consortium WPC

Areas which use AMR/AGV's are currently mostly closed, optimized systems. Therefore the need of a standard/interoperability is maybe not top priority.

EV's have a standard/approval as here interoperability is a topic (like in mobile phones) SAE J2954

Nevertheless:

All solutions have to fullfil regulatory requirements e.g. C E , EN55011, SAE, FCC, RED

ADVANTAGES OF A WIRELESS POWER SOLUTION

- Completely sealed e.g. IP 68 resistance
- Precise positioning at charging spot (automated solutions)
- Omnidirectional positioning
- Applicable to all vehicles used in the process
- No metal contacts No sparks
- Maintenance free no cleaning or contact replacement needed

