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Penetration of Electric Vehicles
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EV sales growing - though not fast enough

Hurdles in widespread adoption due to 

limitations in battery technology:

Limited range

Long charging times

High cost

High EV penetration requires widely 

deployed public charging infrastructure

Global vehicle sales in 2022

EV: 7.6 million (11.5%)

Total: 66 million

Global EV Stock (2022)
23 million (1.5%) out of 1.5 billion vehicles
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Dynamic Charging
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Minimize onboard energy storage

Instead deliver energy to moving EVs from the roadway 

Dynamic Wireless ChargingOverhead Catenary Lines Conductive Rails

Dynamic wireless charging could be viable 

way to drastically reduce batteries in EVs



4

Inductive vs. Capacitive Wireless Power Transfer (WPT)
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Advantages of Capacitive Wireless Charging

Inductive systems require Litz wire and ferrite 
cores for magnetic flux guidance and shielding

Expensive

Fragile and difficult to embed in roadway

Inductive systems operate at relatively low 
frequencies to limit ferrite losses

Large and heavy

Receiver

Power Electronics

Transmitting Coil

Transmitter Power 

Electronics

Receiving Coil

Power Line

Transmitting Plate

Receiving Plate

Transmitter Power 

Electronics Power Line

Receiver

Power Electronics

Capacitive systems simply use conductive plates, 
the fields are naturally directed (no ferrites or 
dielectrics), can operate at high frequencies, so 
can be:

Less expensive 

Easier to embed in roadway

Smaller, lower profile and lighter

Inductive systems have low 
misalignment tolerance and 
induce eddy currents in 
nearby metallic objects

Capacitive systems have 
high misalignment tolerance 
and do not induce eddy 
currents in nearby metallic 
objects
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Conventional Wisdom Regarding Capacitive WPT
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Capacitive WPT usable for low-power small-gap applications

Capacitive charging of EVs through tires has been tried

Low efficiency due to carbon black filler

Inadequate power transfer due to limited area

Source: 

Toyohashi University of Technology
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History Behind Our Capacitive WPT Work
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Nikola Tesla (1891) M. Hutin & M. Leblanc (1894)

UC Berkeley PATH - RPEV (1994)Kumar, Pervaiz, Chang, Korhummel, Popovic & Afridi (2015)

2015 IEEE Wireless Power Transfer Conference



8

Our Early Experiments with Capacitive WPT
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0.5 cm
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Challenges in Capacitive Wireless Charging
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Small coupling capacitance due to large gap between 

road and vehicle

Need high frequency operation to achieve high power 

transfer levels

Need high voltage/current gain to limit fringing fields and 

meet safety limits

Need large reactive compensation
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Large-Airgap Capacitive Wireless Power Transfer
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Electric Vehicle Charging Environment
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Overwhelming Parasitic Capacitances
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Circuit Including Parasitic Capacitances
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Effect of Parasitic Capacitances
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𝐶r,gnd [pF] 𝐶v,gnd [pF]
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Split-Inductor Matching Network

15



16

Effect of Parasitic Capacitances with Split-Inductor 
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Effect of Parasitic Capacitances with Split-Inductor 
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Split-Inductor Matching Network
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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Capacitance Network Simplification
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6.78-MHz Capacitive Wireless Charging Systems
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Output Power: 1216 W

Power Transfer Density: 51.6 kW/m2

Coupling Plates (12.25 cm diameter)

Gen-3 System

Coupling Plates (12.25 cm x 12.25 cm)

Inverter

Air gap: 12 cm 

Operating frequency: 6.78 MHz 

Gen-2 System

Output Power: 589 W

Gen-1 System

Output Power: 146 W

Vehicle

Coupling Plates (12.25 cm x 12.25 cm)
Roadway
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Loss Breakdown Analysis
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Coupled Inductors and Higher Frequency Operation
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Optimizing Coupled Solenoidal Inductors 
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Single Winding

Stacked Parallel Winding

Laterally-Adjacent Parallel Winding
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Solenoidal Inductor Quality Factor Comparison
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𝑄L =
2𝜋𝑓𝐿

𝑅ac
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Solenoidal Inductor Impedance
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Magnitude

Phase

Self-resonance frequency is only slightly higher than operating frequency 

Impedance of “4pLat” Solenoidal Inductor 
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SRF-Inclusive Quality Factor
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𝑄L,SR = 𝑄L −
𝑓

𝑓SR

2

𝑄L +
1

𝑄L
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Modified SRF-Inclusive Quality Factor
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Self-Resonant Frequency Modeling
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Solenoid Inductor Self-Resonant Frequency
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𝑓SR =
𝑐

4𝑙w

𝑙w = 𝑁 𝐷2𝜋2 + 𝑚𝑤 + 𝑠 2
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Quality Factor Improvement using Layered Foil

C. R. Sullivan, "Layered Foil as an Alternative to Litz Wire: Multiple Methods for Equal Current Sharing Among Layers,” Proceedings of the IEEE 

Workshop on Control and Modeling for Power Electronics (COMPEL), Santander, Spain, June 2014.
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Interleaved-Foil Inductor
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Semi-Toroidal Interleaved-Foil (STIF) Coupled Inductor
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Toroidal Interleaved-Foil (TIF) Coupled Inductor
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Coupled Inductor Performance Comparison
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Magnetic Field Containment Comparison
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Single/

Double

2x Wire

Parallel
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Parallel
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13.56-MHz STIF Inductor Based Capacitive WPT System
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Output Power: 2256 W

Full-Power Efficiency: 91%

Peak Efficiency: 94%

Power Transfer Density: 29.7 kW/m2
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13.56-MHz TIF Inductor Based Capacitive WPT System
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Output Power: 3756 W

Power Transfer Density: 49.4 kW/m2

Coupling Plates (22 cm diameter)

Gen-6 System

Air gap: 12 cm

Vehicle

Roadway

Operating frequency: 13.56 MHz 
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Optimal Aspect Ratio of Air-Core Toroidal Inductor 
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Toroidal Inductor Modeling

Uniform 

flux

Central axis 

of toroid

Uniform 

flux at a 

given 

radius 

Central axis 

of toroid

Central axis 

of toroid

Analytical Method 1

L = න
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Analytical Method 2

Numerical Method
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µ0𝑁
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8
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Comparison of Inductance Models

Numerical method value is bounded by analytical method values

Inductance values from both analytical methods match well with numerical method value 

when inner radius is large
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Optimal Ratio of Outer to Inner Radius

Optimal ratio of outer to inner radius maximizes quality factor is bounded by:

1 + 2 <
𝑟2

𝑟1
< 𝑒

50
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Potential for Further Improvements
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Summary and Conclusions
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Dynamic Wireless Charging

Plug-in Charging
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Cornell High Frequency Power Electronics Group 
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Q & A
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Quality Factor Comparison Between TIF and Solenoid
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Minimum Number of Paralleled Wires needed in TIF Inductor for its Quality Factor to Exceed that of 

a Solenoidal Inductor of Same Volume
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Optimal Ratio of Outer to Inner Radius
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Computed using numerical method 

Sweet spot exits for any outer radius
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