Resonant Magnetics for Capacitive Wireless Power Transfer

Khurram Afridi

Cornell University

March 18, 2023

Power Magnetics @ High Frequency Workshop 2023

Penetration of Electric Vehicles

- EV sales growing though not fast enough
- Hurdles in widespread adoption due to limitations in battery technology:
 - Limited range
 - Long charging times
 - High cost
- High EV penetration requires widely deployed public charging infrastructure

Global vehicle sales in 2022 Total: 66 million EV: 7.6 million (11.5%)

Global EV Stock (2022)

23 million (1.5%) out of 1.5 billion vehicles

Dynamic Charging

- Minimize onboard energy storage
- Instead deliver energy to moving EVs from the roadway

Overhead Catenary Lines

Conductive Rails

Dynamic Wireless Charging

Dynamic wireless charging could be viable way to drastically reduce batteries in EVs

Inductive vs. Capacitive Wireless Power Transfer (WPT)

Advantages of Capacitive Wireless Charging

- Inductive systems require Litz wire and ferrite cores for magnetic flux guidance and shielding
 - Expensive
 - Fragile and difficult to embed in roadway
- Inductive systems operate at relatively low frequencies to limit ferrite losses
 - Large and heavy
- Inductive systems have low misalignment tolerance and induce eddy currents in nearby metallic objects

- Capacitive systems simply use conductive plates, the fields are naturally directed (no ferrites or dielectrics), can operate at high frequencies, so can be:
 - Less expensive
 - Easier to embed in roadway
 - Smaller, lower profile and lighter
 - Capacitive systems have high misalignment tolerance and do not induce eddy currents in nearby metallic objects

Conventional Wisdom Regarding Capacitive WPT

- Capacitive WPT usable for low-power small-gap applications
- Capacitive charging of EVs through tires has been tried
 - Low efficiency due to carbon black filler
 - Inadequate power transfer due to limited area

History Behind Our Capacitive WPT Work

Nikola Tesla (1891)

Kumar, Pervaiz, Chang, Korhummel, Popovic & Afridi (2015)

M. Hutin & M. Leblanc (1894)

UC Berkeley PATH - RPEV (1994)

Our Early Experiments with Capacitive WPT

Challenges in Capacitive Wireless Charging

- Small coupling capacitance due to large gap between road and vehicle
- Need high frequency operation to achieve high power transfer levels
- Need high voltage/current gain to limit fringing fields and meet safety limits
- Need large reactive compensation

Large-Airgap Capacitive Wireless Power Transfer

Electric Vehicle Charging Environment

Overwhelming Parasitic Capacitances

Circuit Including Parasitic Capacitances

Effect of Parasitic Capacitances

Split-Inductor Matching Network

Effect of Parasitic Capacitances with Split-Inductor

Effect of Parasitic Capacitances with Split-Inductor

Split-Inductor Matching Network

6.78-MHz Capacitive Wireless Charging Systems

Output Power: 589 W

Loss Breakdown Analysis

Coupled Inductors and Higher Frequency Operation

Optimizing Coupled Solenoidal Inductors

Jvol [A/n*2] Wire Single Winding 5.00000+04 Air Z.0000E+04 Wire 2.6000E+04 2. 4000E+04 20008-00 Cross Section 2.0000E+D 1.0000E+04 6880E+84 MANDE AD 1.20005+04 1.0000E+04 **Plastic Tube** Plastic 8.0000E+03 6.0000E+03 Air Tube 1.0000E-01 2.0000E+03 0.0000E+00 Jvol [A/m^2] Wires Wires 3.00000 +04 **Stacked Parallel Winding** Air 2.00002+04 2. 50000 +04 2. YOURE +84 Cross Section 2.20000 +04 2.00000.+04 1.00002.01 1.50000+04 1.2000E+84 Plastic Tube 1.00000 +04 0.00002+85 **Plastic Tube** nvisible to show 6.00002+03 Air 4,00005+03 blue wire) 2.00000 +01 0.0000E+00 Jvol [A/m*2] Wires 3.000000+01 Air Laterally-Adjacent Parallel Winding Wires 2.00005+0% 2.60002+04 2.10002+01 20005-4 Cross Section 2.00000+0 1. 1000310+0 GOOKEE +0* 1.400000+ 1.20005-04 1.00005+04 **Plastic Tube** Plastic 0.000000+03 6.00002+03 Air Tube 4.00002+03 2.00002+03

0.00002+00

Solenoidal Inductor Quality Factor Comparison

$$Q_{\rm L} = \frac{2\pi f L}{R_{\rm ac}}$$

Solenoidal Inductor Impedance

Impedance of "4pLat" Solenoidal Inductor

Self-resonance frequency is only slightly higher than operating frequency

SRF-Inclusive Quality Factor

$$Q_{\rm L,SR} = \left| Q_{\rm L} - \left(\frac{f}{f_{\rm SR}} \right)^2 \left(Q_{\rm L} + \frac{1}{Q_{\rm L}} \right) \right|$$

Modified SRF-Inclusive Quality Factor

Self-Resonant Frequency Modeling

Solenoid Inductor Self-Resonant Frequency

Quality Factor Improvement using Layered Foil

C. R. Sullivan, "Layered Foil as an Alternative to Litz Wire: Multiple Methods for Equal Current Sharing Among Layers," *Proceedings of the IEEE Workshop on Control and Modeling for Power Electronics (COMPEL)*, Santander, Spain, June 2014.

Interleaved-Foil Inductor

Semi-Toroidal Interleaved-Foil (STIF) Coupled Inductor

Toroidal Interleaved-Foil (TIF) Coupled Inductor

Coupled Inductor Performance Comparison

Magnetic Field Containment Comparison

13.56-MHz STIF Inductor Based Capacitive WPT System

Output Power: 2256 W Full-Power Efficiency: 91% Peak Efficiency: 94% Power Transfer Density: 29.7 kW/m²

13.56-MHz TIF Inductor Based Capacitive WPT System

Operating frequency: 13.56 MHz

Output Power: 3756 W Power Transfer Density: 49.4 kW/m²

Optimal Aspect Ratio of Air-Core Toroidal Inductor

Toroidal Inductor Modeling

Comparison of Inductance Models

- Numerical method value is bounded by analytical method values
- Inductance values from both analytical methods match well with numerical method value when inner radius is large

Optimal Ratio of Outer to Inner Radius

Optimal ratio of outer to inner radius maximizes quality factor is bounded by:

$$1 + \sqrt{2} < \frac{r_2}{r_1} < e$$

Potential for Further Improvements

Summary and Conclusions

Plug-in Charging

Dynamic Wireless Charging

Cornell High Frequency Power Electronics Group

Q & A

Quality Factor Comparison Between TIF and Solenoid

Minimum Number of Paralleled Wires needed in TIF Inductor for its Quality Factor to Exceed that of a Solenoidal Inductor of Same Volume

Optimal Ratio of Outer to Inner Radius

- Computed using numerical method
- Sweet spot exits for any outer radius