Resins in power magnetic design

Potting and Encapsulation

Matching chemistry to performance

Power Magnetics @ High Frequency Workshop

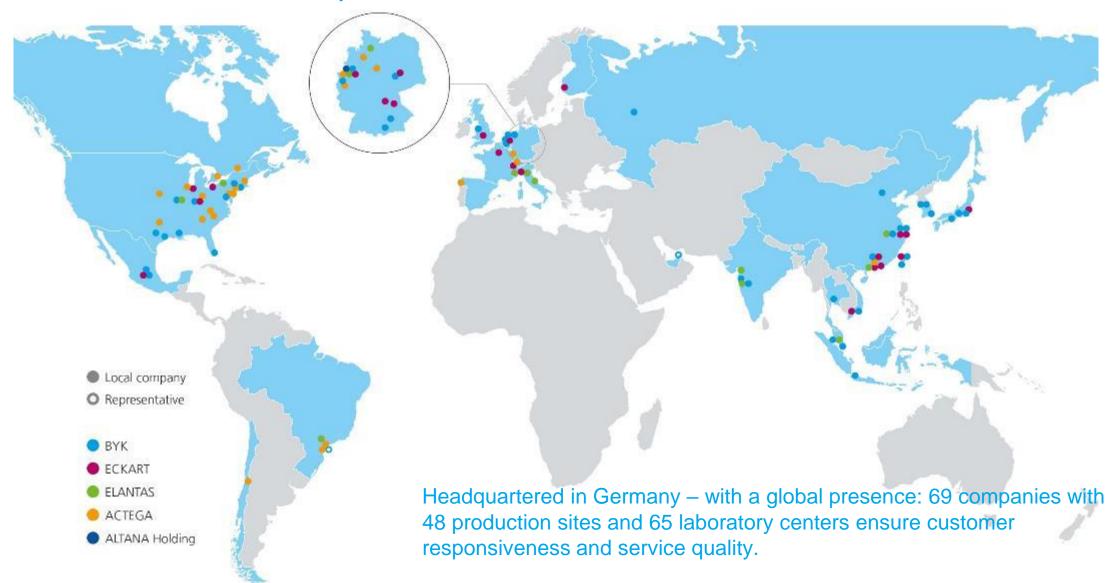
PSMA Magnetics Committee - 18 March 2023, Orlando FL USA

Darryl Lallande Business Development ELANTAS PDG

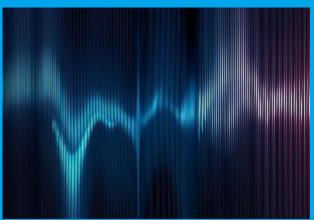
The Epoxylite Corporation
Essex Brownell
Von Roll
From New Orleans, LA
Born on the bayou

ELANTAS PDG

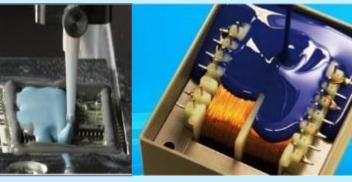
Specialty chemicals for protection of power electrical and electronic components **North American Locations**


Mission: We create **value for customers** by developing, manufacturing, delivering and supporting **innovative solutions** for dedicated industries where our **technology** and **application expertise** makes the difference.

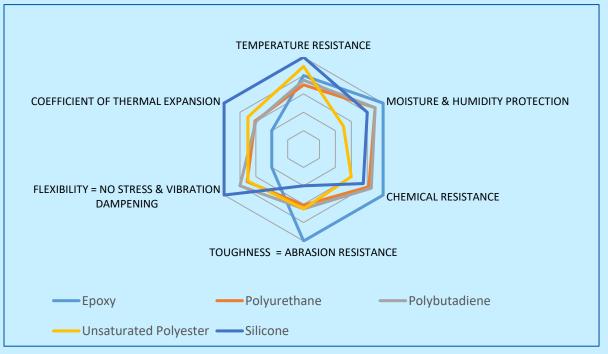
ALTANA Is Present All Over the World


Global network – local presence

Why? Protecting your vital components from: Moisture – Dirt/Dust – Chemicals – Vibration – UV



Typical Applications


- DC/DC converter
- Power inverter
- On-board chargers
- Transformers
- Capacitors
- CTs and VTs

- Application based chemistry selection
 - Epoxy
 - Polyurethane
 - Unsaturated Polyester
 - Polybutadiene
 - Silicone

Design -

Begin with the end in mind – Stephen Covey

- Application
- Environment
- Part or component
- Regulatory requirements
- Process capabilities
- Volume
- Time to start production
- Chemistry

POTTING C ELANTAS APPLICATION QUESTIONNAIRE

New or existing application Application Type— Specific Information If existing, what is current material? Product Environment - Temperature Range? Product Environment - Dust, Fluids, Corrosives, Moisture? Product Environment - UV Exposure? Product Environment – Shock/Vibration? Coil or other small patch high voltage components? Case or pot material? PCB Complexity/Component Mix? (Low, Medium, High) Hidden cavities to fill? Vacuum Potting necessary? Settling time necessary/available? Product handling equipment? Desired Pot Life? Refrigerated storage available? Desired Cure Method? (Heat, RTV, UV, 2-part RT) Maximum Cure Temperature allowed? Desired Cure Cycle Time? Opacity Required? What color is preferred? Any fragile components on the assembly to be potted? UL required? Re-entertainability / reworkable required?

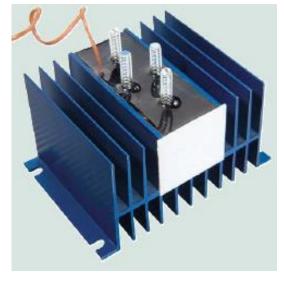
Anti-piracy/no reverse engineer required?

When is the end product?

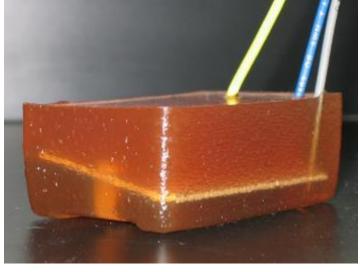
When is the start of production?

Is there a size / packaging requirement?

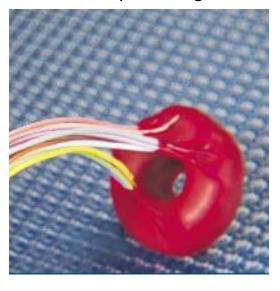
Cartridge, pail, drum, etc.


Workshop Focus

Applications Chemistry Considerations for voltage and frequency



Methods of Application


Potting

Casting

Encapsulating

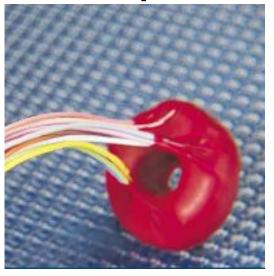
- ◆ Process in which a device or assembled components are placed in a container
- ◆ Container is then filled with the compound, which covers the device
- ◆The container remains an integral part of the completed unit
- ◆ Process in which a device or assembled components are placed in a mold
- ◆ Container that is then filled with the compound, which surrounds the components
- ◆After the compound has cured, the mold is removed
- ◆Process also describes a method where a device is dipped into a resin system
- ◆A thick coating completely surrounds the unit

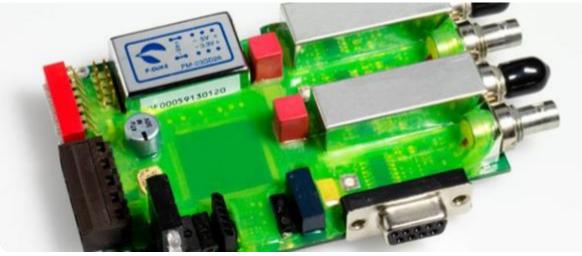
Potting

Resin fills a case, housing, or other container

Considerations

- Mass or volume
- Sensitivity of components
- Color
- Operating temperature
- Physical forces: vibration, shock
- Viscosity
- Vacuum processing
- Hardness




Encapsulation

The resin becomes the outside of the component. No mold is used.

Considerations

- Viscosity
- Cure time
- Color
- Operating temperature
- Physical forces: vibration, shock
- Hardness

Casting

Part is processed in a mold that is removed. Resin becomes the outside of the part

Considerations

- Mass or volume
- Sensitivity of components
- Color
- Operating temperature
- Physical forces: vibration, shock
- Viscosity
- Vacuum processing
- Hardness

Resin Casting & Potting

Transformers, Insulators and Bushings

Cast Resin Application Systems

UVC Under Vacuum Casting

APG
Automatic Pressure
Gelation Technology

Flood Coat

Polyurethane Selective Coating

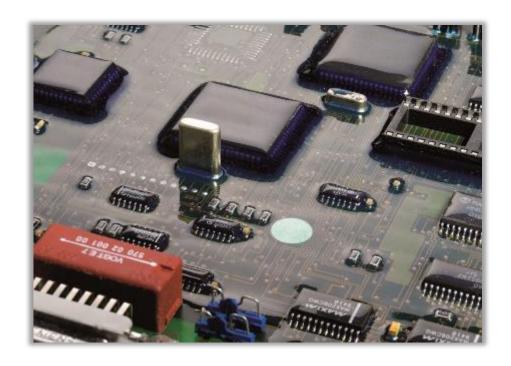
Product Features

- Rheology modified systems to reduce material usage with superior edge coverage
- Reactivity modified systems for rapid throughput
- 30 60% weight reduction possible

Applications

- Converters
- Sensors
- Power Supplies
- Power Electronics
- Inverters

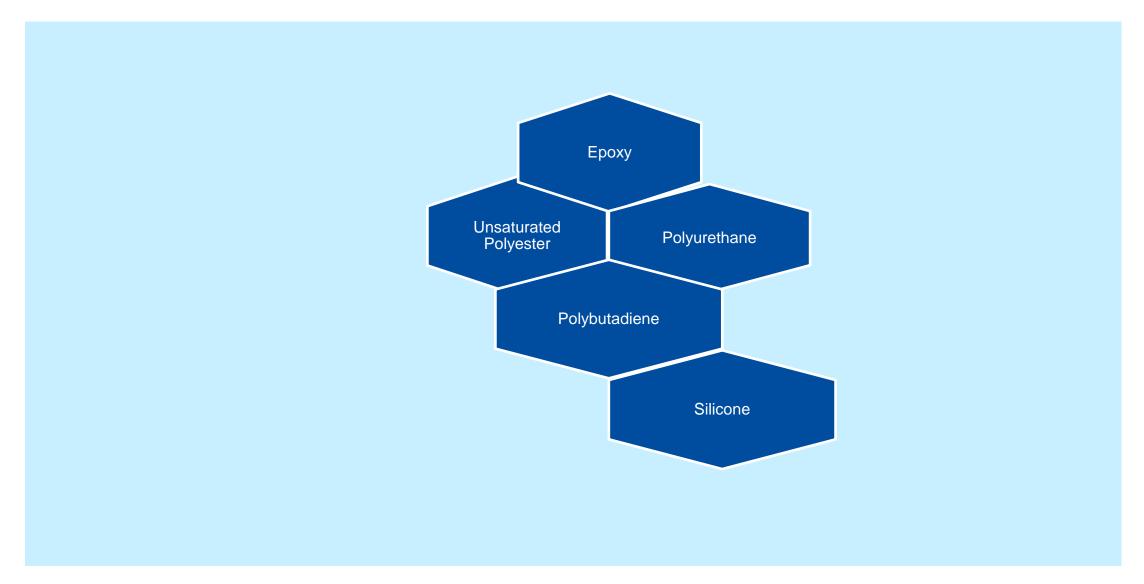
Industries


- Contract Manufacturing
- Motors
- Drives
- Power distribution
- Lighting
- Micro Grid

Power Electronics – Protection of PCBs Conformal Coatings

Conformal Coatings protect PCBs against

- Dust and particles
- Moisture and humidity



Application	Chemistry	Specific Benefits	
Interior, exterior, under the hood	Polyurethane -	- Industry established	
interior, exterior, under the nood	Alkyd	- Fast drying	
Interior, exterior, under the hood	Polyurethane	- High Reliability	
Interior or transient	Polyurethane -	- UV curable	
	Acrylate	- High throughput	
High Temperatures and harsh conditions		- UV curable	
	Ероху	- High throughput	
		- Chemical resistance	
High Temperature applications	Silicone	- High temperature areas	

Popular Chemistries

How they stack up in power electronics

Moisture Absorption

Chemistry	Moisture Absorption	
Polyurethane	+	
Polybutadiene	++	
Unsaturated Polyester	_	
Ероху	+	
Silicone	++	

Adhesion

Chemistry	Adhesion
Polyurethane	+
Polybutadiene	+
Unsaturated Polyester	+
Ероху	++
Silicone	_

Chemical Resistance

Chemistry	Chemical Resistance
Polyurethane	+
Polybutadiene	+
Unsaturated Polyester	+
Ероху	++
Silicone	++

Mechanical

Chemistry	Mechanical
Polyurethane	Soft to hard
Polybutadiene	Soft
Unsaturated Polyester	Medium to hard
Ероху	Hard
Silicone	Soft

Generally Accepted Thermal Classes

Chemistry	Thermal Class, typical
Polyurethane	120-130
Polybutadiene	120-130
Unsaturated Polyester	180-200
Ероху	155-180
Silicone	200

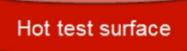
Thermal Conductivity

Material	Thermal Conductivity (W/m·K)
Air	0.03
Neat resin	0.2
Filled resin	1.0
Thermal Interface Materials	2.5+

Thermal Conductivity Measurement Methods

Methods		Temp Range [K]	W/mK	Accuracy [%]	Materials	Standards (examples)
state methods Methods	Guarded hot plate methods	80-800	< 0.8	2	Glass, polymer, insulation materials	ASTM C177 ISO8302 EN12667 ASTM E1225
	Axial flow Methods	90-1300	0.2-200	2	Polymers, ceramics, metals	ASTM E 1225
	Heat Flow meter method	253-523	<10	3	Glass, polymers, insulation materials, ceramics	ASTM C518 ASTM E1530 ISO8301 EN12667
	Pipe Method	293-2770	0.02-200	2	Metals, high conductivity inorganics, polmyer composites	ISO8497
Transient Methods	Laser flash method	373-3273	>0.01	3-5	Glasses, polymers, ceramics, metals	ASTM E161 ISO 22007-4 ISO 18755
	Transient hot wire method	293-2273	<25	1-10	Glasses, polymers, cermics, most of liquid, gas, powders	ASTM-C 1113 ISO 8894-1 ISO 8894-2
	Transient plane source method	20-1273	0.005- 1800	5	Insulation materials, powders, polymers, ceramics, metals, liquids	ISO 22007-2

Input by "View > Slide master": Date Page 33 Name Company or Department Title of the presentation


From: Thermal Conductivity of polymer based composites, Hongyu Chen, Progress in Polymer Science, 59 (2016), 41-85

MEASUREMENT

Apparent Thermal Conductivity

Measurement Setup

Contact Resistance = R_{hs}

$$R_{sample} = \Delta T/Q$$

Cold test surface

View > Slide master": Page 31 Title of the presentation

$$\lambda_{total} = \frac{Q_{total} \cdot d}{A \cdot \Delta T}$$

$$\lambda_{total} = \frac{Q_{total} \cdot d}{A \cdot \Lambda T}$$

$$\frac{\Delta T}{Q_{total}} = \frac{d}{\lambda_{total} \cdot A} = R_{total}$$

with

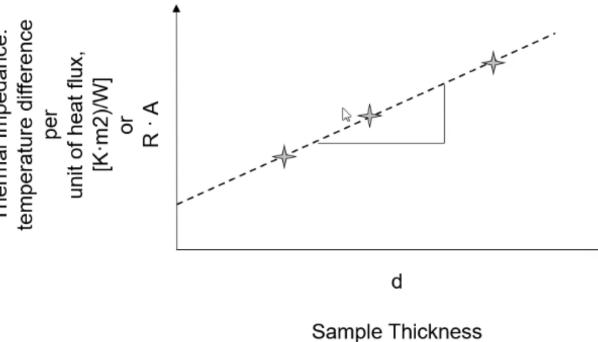
$$R_{total} = R_{sample} + R_{hs} + R_{sc}$$

and

$$R_{sample} = \frac{d}{\lambda_{apparent} \cdot A}$$

Insert and multiply by A(rea)

$$R_{total} \cdot A = \frac{1}{\lambda_{apparent}} \cdot d + (R_{hs} + R_{sc}) \cdot A$$


or

Thermal Impedance =
$$f(d) = \frac{1}{\lambda_{apparent}} \cdot d + const.$$

MEASUREMENT

Possible Concept of Conductivity Measurement -**Thermal Impedance ASTM D5470**

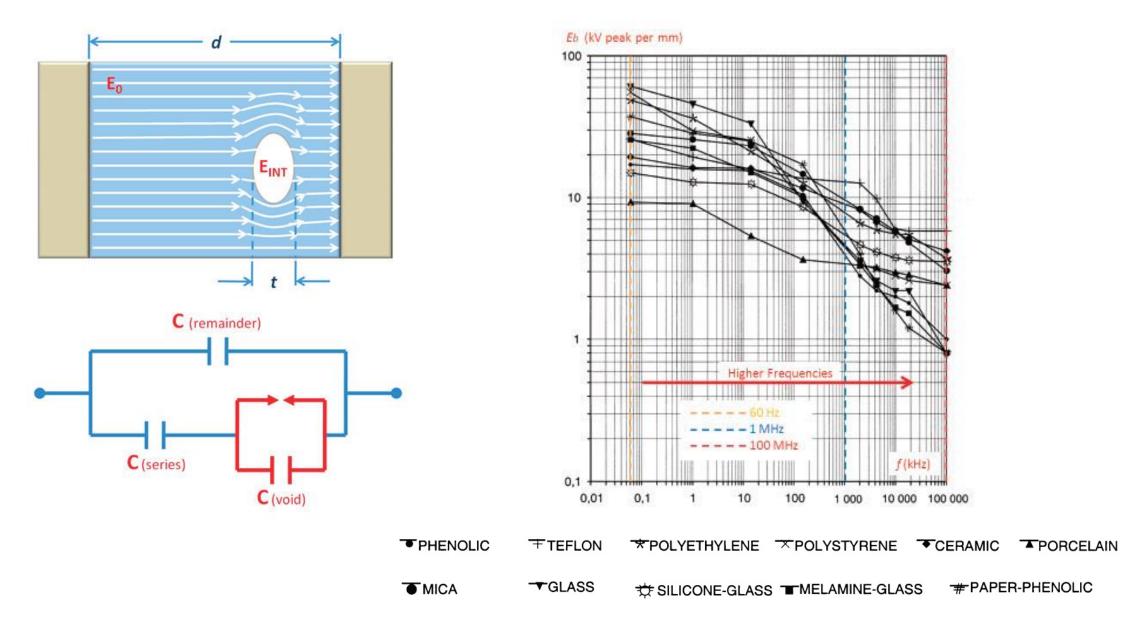
.View > Slide master": Company or Department Title of the presentation

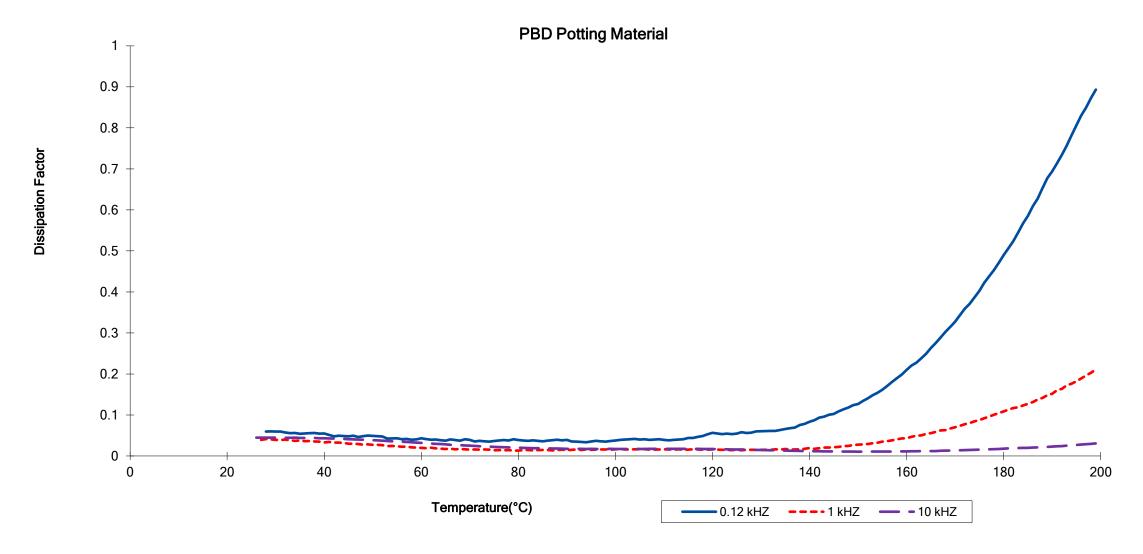
$$R_{total} \cdot A = \frac{1}{\lambda_{apparent}} \cdot d + (R_{hs} + R_{sc}) \cdot A$$

$$Slope = \frac{1}{\lambda_{app}}$$

$$Intercept = (R_{hs} + R_{sc}) \cdot A$$

Thermal Conductivity of TIM sample only equals apparent thermal conductivity if contact resistance values are zero





Impact of frequency on PDIV and Breakdown voltage

Dissipation Factor and frequency

Questions and Thank You!