Parasitic Capacitance in Magnetic Components

Shaokang Luan, Hongbo Zhao, Stig Munk-Nielsen

BACKGROUND

Developed power stack:

- Efficiency >99 % (measured in 50 kW)
 - Increase 3% efficiency at the full converter stage
 - Save 126 million Danish kroner @ 2022
 - Greener transition with less copper
- Switching frequency: 5-10 kHz
- dv/dt > 100 kV/µs (world record at 250 kV/us)

- EMI issues
- Significant capacitive current circulating in the circuit
- Accelerate the aging of transistors
 - Slow down the switching speed and cause extra losses on transistors

Parasitic capacitance is more important in medium-voltage inductors !

PROBLEM FORMULATION

Discrete-element circuit (without mutual inductance)

Two physic-based analytical method for modelling parasitic capacitance in inductor with applying different assumptions

Lumped-circuit-network method

AALBORG

UNIVERSITY

SUSTAINABL DEVELOPMENT GOALS

ENERGY

Voltage distribution in original circuit (simulated by LTspice)

Voltage distribution in lumped-capacitornetwork (simulated by LTspice)

slu@energy.aau.dk hzh@energy.aau.dk smn@energy.aau.dk

Voltage distribution in energy-conservationbased method (by assumptions)

• LTspice simulation:

- Voltage distribution
 - Linear before the first resonant frequency
 - Nonlinear after the first resonant frequency
 - Almost linear around the first resonant frequency
- Parasitic capacitance
 - Be constant with the increasing number of turns after the last resonant frequency
 - Increase with the increasing number of turns at the first resonant frequency

Lumped-capacitor-network method:

Voltage distribution is nonlinear and parasitic capacitance is constant with the increasing number of turns, which is accurate to predict the parasitic capacitance after the last resonant frequency.

• Energy-conservation based method:

Voltage distribution is linear and parasitic capacitance increases with the increasing number of turns, which is more accurate to predict the parasitic capacitance at the first resonant frequency.

Energy-conservation based method is more accurate to predict the parasitic capacitance at the first resonant frequency.

Calculation and simulation results of parasitic capacitance

Pontoppidanstræde 101, Aalborg Øst, 9220, Denmark

AAU ENERGY

REDUCE PARASITIC CAPACITANCE

1020 pF _____ 30 mH

Insertion of spacers

Pros:

Parasitic capacitance contributed by two adjacent layers can be significantly reduced Insulation strength can be icreased Cons:

Parasitic capacitance contributed

Parasitic capacitance contributed

by winding and core will be slightly

Only applicable for multiple-

by two adjacent layers can be

reduced by 50%-75%

Power density will be slightly increased

Using series connections in multiple windings

-1 mH

• Using 'multi-section' windings

Pros:

Cons:

increased

winding strcture

Parasitic capacitance contributed by two adjacent layers can be reduced by 50% with two subsections

Cons:

Parasitic capacitance contributed by winding and core will be slightly increased Manufacture complexity is

significantly increased

ACKNOWLEDGEMENT

Shaokang Luan affiliates to HEART project. Hongbo Zhao and Stig Munk-Nielsen affiliate to HEART project and MVOLT project. Both HEART project and MVOLT project are Grand Solutions funded by Innovation Fund Denmark.

Innovation Fund Denmark