<u>can actericis</u>

ADVANCED MATERIAL FOR POWER ELECTRONICS AND ELECTRIC MOTORS

contact@cmmaterials.com

Problem

Magnetic cores are large. 30-50% circuit footprint covered by inductors and transformers.

~41% loss comes from inductors in a power converters. Two thirds heat generation happens in inductors and transformers.

P_{LOSS} Inductor 41%

Inefficient

- 5x higher resistivity -> Higher efficiency
- 50% higher induction -> Miniaturization

	Electrical resistivity (uohm-cm)	Magnetic Induction (T)
CleanMag/CleanLam	>200	1.8-2.0
Incumbent metals/alloys	45-120	1.1-2.0

US20220392675A1

United StatesPatent Application Publication(10) Pub. No.: US 2022/0392675 A1(43) Pub. Date:Dec. 8, 2022

MAGNETIC MATERIALS AND MANUFACTURING

(52) U.S. Cl.

Applicant: CM Materials Inc., Wilmington, DE (US)

Inventor: Md Aminul Mehedi, Wynnewood, PA

CPC H01F 1/147 (2013.01); C01B 21/0622 (2013.01); C01B 21/0828 (2013.01); H01F 1/20 (2013.01); C01P 2006/42 (2013.01); C01P 2002/77 (2013.01); C01P 2002/72 (2013.01); C01P 2002/85 (2013.01); C01P 2004/03 (2013.01);

~50% lower magnetic loss

Reduce cooling requirement

CleanMag Magnetic core

- **30-50%** smaller
- **50%** more efficient
- Remove active cooling
- Reduced manufacturing cost

- Inductor core
- Inverter
 DC-DC converter
 Transformer
 EMI Filter
 Power Factor Correction (PFC)

Inductor Performance

Inductor core performance chart

Lower Loss and Higher Induction Cores

2

- CleanMag cores have 50% more induction relative to
- Sendust
- CleanMag cores have 200-300% more induction relative to MnZn Ferrites • Driver for high current
- saturation leading to smaller magnetic components

Magnetic induction

- CleanMag cores have 99.2%
 - permeability up to 500 kHz
- We developed 60u as the first product
- We have ability to change the permeability values between 30 and 120

Permeability

Core loss

• CleanMag demonstrated similar type of loss profile to Sendust core Potential to improve 50-60% more than that

Product Roadmap

by end of 2Q23

equipment

We are improving the process and formulation every month

- Tentatively ready final formulation
- Capable to scale with off-the-shelf

Sustainability

reduction by 1797 million Mt per year by 2050

Developed and manufactured in USA

No critical elements No Nickel or cobalt

CO2 emission

Sustainable supply chain

Traction

Work in progress

10+ SAMPLE ORDERS

Potential sales funnel >\$100M

Tier-1 and Tier-2 suppliers in consumer, industrial and EV

Product roadmap

CleanLam Steel production for electric motor

2025

2027

Full production for magnetic core

contact@cmmaterials.com

Board of Advisors

Professor Iqbal Husain

Ben Margolis

Breakthrough Energy Fellows

Ryan Spanheimer

Alan Crapo

Core loss

