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High power grid connected DC loads:

▪ EV charging Stations & Solar inverters

▪ Data centers & DC micro-grid Utility interface

▪ Locomotive drives

Background: MV AC to LV DC SST Applications
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EV Charging Station: Grid Connection through LF Transformer

EV Charging Station: Grid Connection through MV SST

Potential Benefits: 

→ Loss Reduction

→ Increased Power Density



▪ High voltage isolation capability

▪ Operate with ZVS to enable HF operation for 
high-power density

▪ Bi-directional power flow capability

Challenge: Design of high-power density DC-DC 
module while maintaining MV isolation

MV/MF Transformer Requirements 
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Block Diagram of a Typical AC to DC SST Topology



Three popular approaches to achieve MV isolation:

▪ Using high voltage cable for windings

▪ Potting the windings

▪ Oil-immersed windings

▪ Other Techniques

Medium Voltage Insulated Transformers
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High Voltage Cable [1]
Oil-Immersed Windings [3]

Potted Windings [2]



Design Considerations [4]:

▪ Segregating the MV and LV sides (Confines the high electric stress)

▪ Using an insulation sheet to meet the HV requirements

▪ Accommodating a lower magnetizing inductance

▪ Managing the high electric field regions (Ferrite Grinding, Potting)

▪ Loss estimation and thermal management

Insulation Concept Summary
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Considerations: 

▪ Adequate spacing between the MV and LV 
side windings

▪ Ferrite Potential Management 

Insulation Concept: MV/LV Segregation  
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High dielectric strength sheet to meet the isolation requirements: 

▪ FR-4.0/21 material, 1.6 mm

▪ Electric strength: 40 kV minimum

▪ Dielectric constant: 5.20

Insulation Concept: Insulation Sheet
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Meeting the target 
magnetizing inductance:

▪ Custom Ferrite Disks

▪ Ferrite Glue

Insulation Concept: Low Magnetizing Inductance
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Insulation Concept: Low Magnetizing Inductance
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FHA Equivalent Circuit Referred to PrimaryLow Magnetizing Inductance Impact: 

▪ Higher Circulating Currents 

▪ Seamless Power Transitions and Zero-voltage Switching



Insulation Concept: Low Magnetizing Inductance
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Low Magnetizing Inductance Impact: 

▪ Higher Circulating Currents 

▪ Seamless Power Transitions and Zero-voltage Switching



Design Considerations [4]:

▪ Segregating the MV and LV sides (Confines the high electric stress)

▪ Using an insulation sheet to meet the HV requirements

▪ Accommodating a lower magnetizing inductance

▪ Managing the high electric field regions (Ferrite Grinding, Potting)

▪ Loss estimation and thermal management

Insulation Concept Summary
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Insulation Concept: High Electric Field Regions
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Managing and reducing concentrated electric field stress: 

▪ Ferrite Grinding

▪ Vacuum Potting



Insulation Concept: High Electric Field Regions
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Managing concentrated electric field stress: 

▪ Ferrite Grinding

▪ Vacuum Potting

Electric Field Distribution Under 10 kV Voltage 
Stress Between Two Halves of the Transformer

After Ferrite Grinding

Before Ferrite Grinding

Max:  5.15E+05

Max:  1.25E+06



Insulation Concept: High Electric Field Regions
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Managing concentrated electric field stress: 

▪ Ferrite Grinding

▪ Vacuum Potting

Electric Field Distribution Under 10 kV Voltage 
Stress Between Two Halves of the Transformer

After Potting in Resin

Before Potting in Resin

Max:  5.15E+05

Max:  8.45E+04



Design Considerations [4]:

▪ Segregating the MV and LV sides (Confines the high electric stress)

▪ Using an insulation sheet to meet the HV requirements

▪ Accommodating a lower magnetizing inductance

▪ Managing the high electric field regions (Ferrite Grinding, Potting)

▪ Loss estimation and thermal management

Insulation Concept Summary
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▪ Total Transformer Loss at 80 kW: 268 W (25 % of total loss) 
Core:  162.8 W - Copper: 105.2 W

▪ 99.7 % estimated efficiency for transformer operating at 
91.2 kVA stress for 80 kW load

Insulation Concept: Thermal Management
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Loss Estimation and Thermal Management:

▪ Proper tradeoff between copper and core loss

▪ Air cooling-based design

▪ High current litz wire termination

ANSYS Maxwell Model



Insulation Concept: Thermal Management
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Thermal Management:

▪ Proper tradeoff between copper and core loss

▪ Air cooling-based design

▪ High current litz wire termination



Insulation Concept: Thermal Management
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Thermal Management:

▪ Air cooling-based design

▪ Proper tradeoff between copper and core loss

▪ High current litz wire termination

Litz Wire: 9750 Strands of 42 AWG Wire – Length: 9.5 ft  

LCR Measurements of a Single Loop 

15% Reduction 
at 50 kHz

▪ A. Roßkopf, E. Bär and C. Joffe, "Influence of Inner Skin- and Proximity Effects on Conduction in Litz Wires," in IEEE Transactions on Power Electronics, vol. 29, no. 
10, pp. 5454-5461, Oct. 2014.

▪ D. Barth, T. Leibfried and G. Cortese, "Analytical calculation of the frequency-dependent litz wire resistance considering the wire connectors," 2019 21st 
European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), Genova, Italy, 2019, pp. P.1-P.10, doi: 10.23919/EPE.2019.8915419.



▪ 12 kV dielectric withstand capability

▪ 90 mm creepage and 50 mm clearance

▪ Dimensions W*L*H: 12” X 12” X 12” 

▪ Height is only 7.2” from primary base-plate to secondary base-plate

▪ Height is 12” with the fiber rods used for mounting to converter base-plate

▪ Weight: 12.56 Kg

Transformer Fabrication Details
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Fabricated Transformer

Key Details:

Materials Summary



Application: Unfolding-based DC SST
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Quasi Single-Stage ApproachTwo-Stage Approach

Potential Benefits: 

→ Higher power density by eliminating LF filtering 

→ Higher efficiency by eliminating a hard-switched front-end

→ More constant power processing 

Challenges: 

→ Requires new and advanced modulation and 
control techniques [7,8]



Application: Unfolding-based DC SST
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Quasi Single-Stage SST Approach
▪ 4.16 kV three-phase input, 560 kW, 750 V – 900 V DC output

▪ Soft dc-link front-end with 6.5 kV IGBT implementation

▪ Seven DC-DC series stacked modules (80 kW each)

▪ Each module is an isolated three-port converter



Application: Unfolding-based DC SST
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External Setup for the MV Unfolder 
and a Three-port 80 kW DC-DC

The full components for the 560 kW 
unfolding-based SST

Fabricated MV/MF 
Transformer

Step-up LF Transformer 
for In-lab Testing 

TABSRC 80 kW Module



The Research Team 
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▪ MV AC to LV DC Solid-State Transformer applications and design challenges

▪ A simple and cost-effective insulation approach

▪ Design considerations for the proposed MV/MF transformer   

▪ Experimental results of an 80 kW CLLLC Dual Active Bridge converter

▪ 99.7% is the estimated transformer efficiency at full load

▪ Practical consideration for transformer design and fabrication 

Summary
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Thank you!

mahmoud.mansour@usu.edu
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