Battery Needs and Challenges in the Automotive Space

<table>
<thead>
<tr>
<th>EV Need:</th>
<th>Battery Need:</th>
<th>Battery Challenge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Range</td>
<td>Higher Energy Density</td>
<td>Lower Power, Cycle Life</td>
</tr>
<tr>
<td>Faster “Fill-up”</td>
<td>Fast Charge</td>
<td>Lithium Plating, Heating</td>
</tr>
<tr>
<td>Regenerative Charging</td>
<td>Improved Fire Safety</td>
<td>Charge Acceptance</td>
</tr>
<tr>
<td>Improved Fire Safety</td>
<td>Improved Fire Safety</td>
<td>Thermal, Shorting</td>
</tr>
<tr>
<td>Longer Automotive Life</td>
<td>Longer Automotive Life</td>
<td>Cycle Life</td>
</tr>
<tr>
<td>Lower Costs</td>
<td>Lower Costs</td>
<td>Processing, Materials</td>
</tr>
</tbody>
</table>
TECHNOLOGY OVERVIEW

Fast Charging due to Metal Foam Architecture:
1. Li⁺ moves fast through in liquid through pores to Silicon surface
2. Silicon is thin, so Li⁺ moves more quickly to reaction site in middle of silicon
3. Electron moves fast through metal scaffold to silicon surface
4. Electron moves quickly through thin silicon to reaction site
Electrode fabrication process

- **Electroplating**
 - Mass Production
 - Materials Refinement

- **>99.4% Pure Materials**
 - Starting Raw Materials: 80% ~ 95% pure

- **Simplified Manufacturing Process**
 - Combines material synthesis and fabrication

- **Variety of Substrates**
 - Metal Foils
 - Metal Foams
 - Carbon Foams and Fibers
 - Opportunities for New Applications

Electroplating bath:
made of lower purity raw materials

Electroplating process:
Minutes, not hours

Electrode rinsing (in water) & drying
DirectPlate™

Enables High Packing Density

LCO electroplated on Al foil

- Direct deposition of active battery materials on foil
- Up to 250 micron thick
- No binders
- No conductive additives
- Up to ~ 90% volume fraction of active materials
- Strong adhesion between active materials and current collectors
DirectPlate™
- Lithium Cobalt Oxide
High Power LCO Cathode
- Realized via DirectPlate™

Coin cell-half cell (vs. Li/Li⁺)
10C charge current

State of Charge (%)
Charge Time (min)

- LCO, 2.2 mAh/cm² (Xerion)
- LCO, 3.0 mAh/cm² (Xerion)
- LCO, 3.5 mAh/cm² (Xerion)
DirectPlate™: Robust Battery Structures
- LCO cathode Scotch Tape Adhesion Test
DirectPlate™ Enables High Flexibility

Electrodes rolled at ~ 2.5 mm radius

After rolling 1000 times

Conventional LCO DirectPlate™ LCO

Discharge profile after rolling

Conventional LCO electrode

- 0 rolls
- 100 rolls
- 500 rolls

DirectPlate™ LCO electrode

- 0 rolls
- 1000 rolls
DirectPlate™
- A new method to make cathode for cable batteries

LG Chem’s Cable Batteries

LCO coated wire

1ST cycle of LCO coated wire

1.2 1.0 0.8 0.6 0.4 0.2 0 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 0.8 0.6 0.4 0.2 0 1.2

Capacity/mA.h

Packaging Insulator Al wire Separator

Cathode Composite (LiCoO₂) Ni-Sn Anode (Hollow-Spiral)
StructurePore™
- Enhance battery performance

DirectPlate™

StructurePore™:
- High power cathode
- High energy anode
 - silicon
 - tin
 - lithium
- Scale-up
XABC SILICON STRUCTURE PORE CONCEPT

Structure pore Ni foam

Fast silicon electrodeposition

Discharge cycle and associated contraction

Charge cycle and associated expansion

Pore space accommodates silicon expansion

Returns nearly to original state
XABC SILICON STRUCTURE PORE CONCEPT

Structure pore Ni foam

Fast silicon electrodeposition

Discharge cycle and associated contraction

Returns nearly to original state

Charge cycle and associated expansion

Pore space accommodates silicon expansion
XERION TECHNOLOGY PRODUCES HIGH ENERGY BATTERIES USING POROUS SILICON

- Fast charging
- Fast, Direct plating
- Conformal deposition of silicon on 3D scaffold
- No need for copper foil
- No slurry processing needed
- Silicon much cheaper than graphite
- Good cycle life

Metallic 3D scaffold

Si coating

~100 – 500 nm coating
XABC FAST CHARGE SILICON HALF CELL
SIGNIFICANTLY OUTPERFORMS ‘HIGH-POWER’ COMMERCIAL GRAPHITE ELECTRODE

Diagram:
- **XABC Si**: 2.6 mAh/cm², 43 μm, 600 mAh/cm³
- **Commercial Graphite**: 2.0 mAh/cm², 51 μm, 400 mAh/cm³

Graph:
- SOC (%) vs. Time (min) for XABC Si and Commercial Graphite
GOOD HALF CELL CYCLE LIFE IS ENABLED BY INTERNAL POROSITY, NANOSTRUCTURED MORPHOLOGY AND OPTIMIZED SURFACE AREA

- High silicon loading
- Minimal capacity degradation

0.05 - 1V vs. Li/Li$^+$ 23°C, Coin
Anode: Si010218-3_1 (~3.695 mAh/cm²/side, 144 µm thick)
Cathode: NMC622, 96%, BIC (~3.45 mAh/cm²)
Area: 5.75 x 5.6 cm²
Packaging: 71 µm laminate
Separator: 12 µm
Capacity: 173.3 mAh
Average Voltage at 1C charge: 3.334 V
CHARGE RATE ANALYSIS SHOWS THAT SI BASED FULL CELLS CAN BE CHARGED AT FAST RATE WITHOUT VISIBLE SIGNS OF LI PLATING

Considerable Li plating on commercial graphite anode with fast charging

4.2 – 2.5 V 23°C, Coin
FULL CELL PROTOTYPES
EXPECTED ENERGY / POWER DENSITY

<table>
<thead>
<tr>
<th></th>
<th>Present</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (Wh/l) @ 1C</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>Energy (Wh/kg) @ 1C</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>Power (Wh/l), RT, 50% SOC, 5C, 10S</td>
<td>3700</td>
<td>4000</td>
</tr>
<tr>
<td>Power (Wh/kg), RT, 50% SOC, 5C, 10S</td>
<td>1600</td>
<td>1775</td>
</tr>
</tbody>
</table>
NOVEL MANUFACTURING PROCESS

Can be quickly customized with minimal change in tooling.

High Power
- Highly structured, fast charge
- Markets:
 - Hybrid Vehicles
 - Drones
 - Power Tools
 - National Defense

Flexible
- 3000 flex cycles, no degradation
- Markets:
 - Wearables
 - Internet of Things
 - Medical

Very High Energy
- Thick electrodes, no binder
- Markets:
 - All-Electric Vehicles
 - Grid-Scale Storage
 - Cell Phones

Micro-battery
- Fab-compatible, high energy
- Markets:
 - Embedded Electronics
 - Bluetooth/RFID devices

Because Electrodeposition (Electroplating) is also a refinement technique, it offers high potential to reduce costs and open new sources for less pure lithium materials.